بررسی میدانی و ریزساختاری آسیب‌پذیری اسکله‌های بتنی مسلح در برابر نفوذ یون کلرید در محیط دریایی خلیج‌فارس (مطالعه موردی: اسکله بندرعباس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده فنی، دانشگاه هرمزگان.

2 ایران، هرمزگان، بندرعباس،

10.22124/jcr.2025.30673.1701

چکیده

سازه‌های بتنی مسلح در محیط‌های دریایی به‌ویژه در سواحل خلیج‌فارس، در معرض تخریب تدریجی ناشی از نفوذ یون کلرید و کربناتاسیون قرار دارند. شرایط اقلیمی گرم و مرطوب، تبخیر بالا، پاشش مستقیم آب دریا و آلودگی‌های صنعتی، محیطی به‌شدت خورنده را برای این سازه‌ها فراهم کرده است. پژوهش حاضر با هدف بررسی میدانی و ریزساختاری آسیب‌پذیری اسکله‌های بتنی، به مطالعه موردی اسکله‌های بندرعباس می‌پردازد. به‌منظور تحلیل دقیق مکانیزم‌های تخریب، آزمایش‌هایی نظیر تعیین پروفیل نفوذ یون کلرید، بررسی میکروسکوپی با استفاده از تصاویر SEM، تحلیل عنصری با طیف‌سنجی پراش انرژی پرتوایکس (EDX) و اندازه‌گیری مقاومت فشاری بتن بر روی نمونه‌های برداشت‌شده و آزمایشگاهی انجام شده است. بر اساس نتایج بدست آمده نفوذ یون کلرید به درون بتن، عامل اصلی تخریب زودهنگام سازه‌های دریایی در محیط دریایی خلیج فارس است. این یون‌ها با ایجاد ترکیبات ناپایدار نظیر نمک فریدل و تضعیف ژل/ نانوساختار C-S-H، به‌طور مستقیم موجب افزایش تخلخل، کاهش انسجام ریزساختار، و افت مقاومت مکانیکی بتن می‌شوند. تصاویر میکروسکوپی (SEM) و تحلیل‌های عنصری (EDX) حاکی از تمرکز بالای یون کلرید، ترک‌های ریز و آسیب به ناحیه انتقالی سطحی بین خمیر سیمان و سنگدانه‌ها است. مشاهده پروفیل‌های نفوذ کلرید، بیانگر عبور غلظت یون‌ها از حد بحرانی خوردگی در عمق‌هایی بیش از 100 میلی‌متر است که نشان‌دهنده ضعف در طرح اختلاط، تراکم و عمل‌آوری بتن است. همچنین نتایج نشان داد که وجود پوشش‌های طبیعی نظیر صدف دریایی و افزایش ضخامت لایه پوششی بتن، در کاهش میزان نفوذ کلرید مؤثر بوده و نقش حفاظتی چشمگیری ایفا می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Field and Microstructural Investigation of the Vulnerability of Reinforced Concrete Wharves to Chloride Ion Penetration in the Marine Environment of the Persian Gulf

نویسندگان [English]

  • mohammad amiri 1
  • Bahrami Goorbandi Bahrami Goorbandi 2
1 Associate Professor, University of Hormozgan, Faculty of Engineering, Bandar Abbas, Iran
2 Master Student, Civil Engineering, Islamic Azad University, Bandar Abbas Branch, Iran.
چکیده [English]

Reinforced concrete structures in marine environments, particularly along the Persian Gulf coasts, are susceptible to gradual deterioration caused by chloride ion penetration and carbonation. The hot and humid climate, high evaporation rates, direct seawater splash, and industrial pollutants create a highly aggressive environment for these structures. The present study aims to investigate the field performance and microstructural vulnerability of reinforced concrete wharves through a case study of the Bandar Abbas ports. To comprehensively analyze the degradation mechanisms, several tests were conducted on both field-extracted and laboratory-prepared specimens, including chloride ion penetration profiling, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and compressive strength testing. The results indicate that chloride ion ingress is the primary factor responsible for the premature deterioration of marine structures in the Persian Gulf. These ions contribute to the formation of unstable compounds such as Friedel's salt and weaken the C-S-H gel/nanostructure, directly leading to increased porosity, reduced microstructural integrity, and loss of mechanical strength. SEM images and EDX elemental analyses revealed high concentrations of chloride ions, microcracks, and damage to the interfacial transition zone (ITZ) between the cement paste and aggregates. Chloride penetration profiles showed ion concentrations exceeding the critical corrosion threshold at depths greater than 100 mm, indicating deficiencies in mix design, compaction, and curing practices. Moreover, the results demonstrated that natural coverings such as marine shells and increased concrete cover thickness significantly reduce chloride ingress and play an effective protective role.

کلیدواژه‌ها [English]

  • Concrete degradation
  • wharf
  • aggressive environment
  • structural repair
  • chloride ion
  • Bandar Abbas
[1] Lee, T., D. Kim, S. Cho, and M.O. Kim, Advancements in Surface Coatings and Inspection Technologies for Extending the Service Life of Concrete Structures in Marine Environments: A Critical Review. Buildings, 2025. 15(3): p. 304.
[2] Zhang, J. Application of ultra-high performance concrete in the marine environment. in E3S Web of Conferences. 2025. EDP Sciences.
[3] Zhao, R., C. Li, and X. Guan, Advances in modeling surface chloride concentrations in concrete serving in the marine environment: A mini review. Buildings, 2024. 14(6): p. 1879.
[4] Amiri, M., M. Mandegari, and H. Karimi, Microstructural Investigation of Compressive Strength and Permeability of Concrete Containing Fly Ash in the Marine Environment of the Persian Gulf. Civil Engineering Infrastructures Journal, 2024. 57(2): p. 323-336.
[5] Ghoddousi, P., Literature review on Coefficient of Chloride diffusion in Concrete and Propose the novel model. Concrete research, 2020. 13(2): p. 19-30.
[6] Junior, J.R.H., C.E. Balestra, and R.A. Medeiros-Junior, Comparison of test methods to determine resistance to chloride penetration in concrete: Sensitivity to the effect of fly ash. Construction and Building Materials, 2021. 277: p. 122265.
[7] Bertolini, L., B. Elsener, P. Pedeferri, E. Redaelli, and R.B. Polder, Corrosion of steel in concrete: prevention, diagnosis, repair. 2013: John Wiley & Sons.
[8] Bu, Y., D. Luo, and J. Weiss, Using Fick's second law and Nernst–Planck approach in prediction of chloride ingress in concrete materials. Advances in Civil Engineering Materials, 2014. 3(1): p. 566-585.
[9] Jin, M., S. Gao, L. Jiang, H. Chu, M. Lu, and F.F. Zhi, Degradation of concrete with addition of mineral admixture due to free chloride ion penetration under the effect of carbonation. Corrosion science, 2018. 138: p. 42-53.
[10]  Honglei, C., J. Zuquan, Z. Tiejun, W. Benzhen, L. Zhe, and L. Jian, Capillary suction induced water absorption and chloride transport in non-saturated concrete: The influence of humidity, mineral admixtures and sulfate ions. Construction and Building Materials, 2020. 236: p. 117581.
[11]  Chiarella, G., Effect of mechanical cracking on the corrosion of steel reinforcement in concrete. 2023, Politecnico di Torino.
[12]  Marques, P.F., A. Costa, and F. Lanata, Service life of RC structures: chloride induced corrosion: prescriptive versus performance-based methodologies. Materials and structures, 2012. 45: p. 277-296.
[13] Angst, U., B. Elsener, C.K. Larsen, and Ø. Vennesland, Critical chloride content in reinforced concrete—A review. Cement and concrete research, 2009. 39(12): p. 1122-1138.
[14] Ann, K.Y. and H.-W. Song, Chloride threshold level for corrosion of steel in concrete. Corrosion science, 2007. 49(11): p. 4113-4133.
[15] Mohammad Hossein Tadayin, M.T., Mohammad Shakarchizadeh, Mehdi Valipour, Estimation of critical chloride ion concentration for corrosion initiation in concrete with different water-to-cement ratios under tidal conditions in the Persian Gulf. The 8th Annual National Iranian Concrete Conference, 2016.
[16] Wang, Y., C. Liu, Y. Tan, Y. Wang, and Q. Li, Chloride binding capacity of green concrete mixed with fly ash or coal gangue in the marine environment. Construction and Building Materials, 2020. 242: p. 118006.
[17] Yuan, Q., C. Shi, G. De Schutter, K. Audenaert, and D. Deng, Chloride binding of cement-based materials subjected to external chloride environment–a review. Construction and building materials, 2009. 23(1): p. 1-13.
[18] Nie, Q., C. Zhou, X. Shu, Q. He, and B. Huang, Chemical, mechanical, and durability properties of concrete with local mineral admixtures under sulfate environment in Northwest China. Materials, 2014. 7(5): p. 3772-3785.
[19] Sui, X., J. Yang, Y. Huang, C. Lu, Q. Wang, K. Zhuang, Y. Xu, Y. Zhou, and J. Cai, Study on the effect of silica fume dosage on the mechanical properties and chloride ion penetration resistance of Ultra-high Ductile Cementitious Composites (UHDCC). Journal of Building Engineering, 2025: p. 112765.
[20] Ganjian, E. and H.S. Pouya, The effect of Persian Gulf tidal zone exposure on durability of mixes containing silica fume and blast furnace slag. Construction and Building Materials, 2009. 23(2): p. 644-652.
[21] Ehsan dost and Zare, Long-term effect of chloride ion penetration on concrete durability in the Persian Gulf coasts. Specialized Quarterly Journal of Water Engineering, 2022. 10(3).
[22] Tangtakabi, A., M. Ramesht, A. Pahlaviani, and T. Pourrostam, Investigation on Chloride-Induced Corrosion Reduction Strategies for Offshore Reinforced Concrete Structures. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2024. 48(3): p. 1245-1260.
[23] ASTM, C33, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, West Conshohocken, PA (2006). .
[24] ASTM, C188-17, Standard Test Method for Density of Hydraulic Cement.
[25] Mehta, P.K. and P.J. Monteiro, Concrete: microstructure, properties, and materials. 2014: McGraw-Hill Education.
[26] ASTM, C42/C42M-20, Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete. ASTM International, West Conshohocken, PA (2020). .
[27] ASTM, C39, Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA (2010). .
[28] ASTM, C192/C192M-19 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory.
[29] NT BUILD 443, Concrete, hardened:Accelerated chloride penetration. 1995.
[30] ASTM, C114, Standard Test Methods for Chemical Analysis of Hydraulic Cement.
[31] ASTM, C1152, Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete.
[32] Topic 9: National Building Regulations (Fifth Edition),Design and construction of reinforced concrete buildings, National Building Regulations Office, (2020).
[33] Ortiz-Salcedo, B.H., J.M. Paris, C.C. Ferraro, R. Minkara, and K.A. Riding, Evaluation of chlorides in fly ash for use in concrete. Cleaner Materials, 2022. 5: p. 100098.
[34] Mahi, M.S.H. and T.A. Ridoy, Corrosion Mechanisms in Reinforced Concrete: Causes, Effects, and Sustainable Mitigation Strategies. Current Problems in Research, 2025. 1(1): p. 52-66.
[35] Melchers, R.E. and P.J. Richardson, Carbonation, neutralization, and reinforcement corrosion for concrete in long-term atmospheric exposures. Corrosion, 2023. 79(4): p. 395-404.
[36] Amiri, M. and P. Tanideh, Microstructural Assessment of the Effect of Sulfate Environments on the Mechanical Properties of GeopolymerConcrete. Concrete Research, 2020. 13(2): p. 45-57.
[37] Amiri, M. and P. Tanideh, Microstructural Assessment of the Effect of Sulfate Environments on the Mechanical Properties of Concrete. MODARES CIVIL ENGINEERING JOURNAL, 2020. 19(6): p. 1-14.
[38] Khatib, J.M. and P. Mangat, Influence of high-temperature and low-humidity curing on chloride penetration in blended cement concrete. Cement and concrete research, 2002. 32(11): p. 1743-1753.
[39] Iwanami, M., H. Yokota, H. Hamada, T. Yamaji, and H. Watanabe. Can marine fouling organisms extend the life of concrete structures? in IABSE Symposium Report. 2002. International Association for Bridge and Structural Engineering.
[40] MARUYA, T., M. IWANAMI, E. SAKAI, M. MASHIMO, and H. HAMADA, Durability enhancement of RC structures covered with a dense layer formed by marine aquatic fouling organisms. Doboku Gakkai Ronbunshu, 2003. 2003(739): p. 61-74.
[41] Kawabata, Y., E. Kato, and M. Iwanami, Enhanced long-term resistance of concrete with marine sessile organisms to chloride ion penetration. Journal of Advanced Concrete Technology, 2012. 10(4): p. 151-159.
[42] Lv, J., M. Wang, X. Hu, Z. Cao, and H. Ba, Experimental study on the durability and microstructure of marine concrete covered with barnacles. Construction and Building Materials, 2022. 317: p. 125900.
[43] Ramezanianpour and Poukhorshidi, Code of practice for concrete durability in the Persian Gulf and Omman Sea. Research Report BHRC Publication No.S-428. Building and Houising Research Center., 2005.
[44] Standard, A. Building code requirements for structural concrete (ACI 318). in American Concrete Institute. 2011.
[45] En, B. 1-1: 2004. in Eurocode. 1992.
[46] Taylor, H., Cement Chemistry, 2nd edThomas Telford. 1997, London.
[47] Mehta, P.K. and P. Monteiro, Concrete: microstructure, properties, and materials. (No Title), 2006.
[48] Al-Amoudi, O.S.B., Attack on plain and blended cements exposed to aggressive sulfate environments. Cement and Concrete Composites, 2002. 24(3-4): p. 305-316.