[1] Akhtar, A. and A.K. Sarmah, Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 2018. 186: p. 262-281.
[2] Xiao, J., Recycled aggregate concrete, in Recycled aggregate concrete structures. 2018, Springer. p. 65-98.
[3] Wang, B., et al., A comprehensive review on recycled aggregate and recycled aggregate concrete. Resources, Conservation and Recycling, 2021. 171: p. 105565.
[4] Bai, G., et al., An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Construction and building materials, 2020. 240: p. 117978.
[5] ممتازی, ص., وهمکاران, ارزیابی خصوصیات بتن الیافی حاوی سنگدانههای بازیافتی بتنی با استفاده از روشهای غیرمخرب. تحقیقات بتن, 2013. 6(1): p. 73-86.
[6] Guo, H., et al., Durability of recycled aggregate concrete–A review. Cement and concrete composites, 2018. 89: p. 251-259.
[7] رامشت, م. حسن, و همکاران، تاثیر غلظت مولاریته محلول هیدروکسید سدیم و نسبت مقدار سیلیکات سدیم به هیدروکسید سدیم بر مقاومت فشاری و جذب آب حجمی بتن فعال شده قلیایی بر پایه سرباره. تحقیقات بتن, 2018. 11(2): p. 95-103.
[8] Amran, Y.M., et al., Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production 251. 2020 p. 119679.
[9] Thomas, B.S., et al., Geopolymer concrete incorporating recycled aggregates: A comprehensive review. Cleaner Materials, 2022: p. 100056.
[10] Ma, C.-K., A.Z. Awang, and W. Omar, Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 2018. 186: p. 90-102.
[11] Hassan, A., M. Arif, and M. Shariq, Use of geopolymer concrete for a cleaner and sustainable environment–A review of mechanical properties and microstructure. Journal of cleaner production, 2019. 223: p. 704-728.
[12] Nuaklong, P., et al., Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. Journal of Cleaner Production, 2020. 252: p. 119797.
[13] Xie, J., et al., Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Composites Part B: Engineering, 2019. 164: p. 179-190.
[14] Nuaklong, P., V. Sata, and P. Chindaprasirt, Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Construction and Building Materials, 2018. 161: p. 365-373.
[15] Aldemir, A., et al., Shear behaviour of reinforced construction and demolition waste-based geopolymer concrete beams. Journal of Building Engineering, 2022. 47: p. 103861.
[16] Pawluczuk, E., et al., Geopolymer concrete with treated recycled aggregates: Macro and microstructural behavior. Journal of Building Engineering, 2021. 44: p. 103317.
[17] Sharkawi, A., et al. Efficiency of geopolymer vs. high-strength grout as repairing material for reinforced cementitious elements. in Structures. 2020. Elsevier.
[18] Albidah, A., et al., Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures. Journal of Materials Research and Technology, 2020. 9(5): p. 10732-10745.
[19] Standard, A., C150-07. Standard Specification for Portland Cement. 2007, ASTM International, West Conshohocken, PA.
[20] EN, B.S., Testing hardened concrete–Part 3: Compressive strength of test specimens. British Standard Institution, London, UK, 2009.
[21] Standard, A., Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression. ASTM Stand. C, 2010. 469.
[22] Standard, A., C1583 (2013)” Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-Off Method),”. ASTM International, West Conshohocken, PA.