تاثیر امواج توان زیاد فراصوتی در افزایش مقاومت فشاری بتن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمیگروه مهندسی آکوستیک دانشگاه صدا و سیما

2 مهندسی و مدیریت ساخت، واحدعلوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

10.22124/jcr.2023.21238.1538

چکیده

امروزه باقی ماندن در بازارهای اقتصادی، بواسطه رقابت شدید تولید کننده‌ها، منوط به حفظ کیفیت و کاهش هزینه‌هاست. همچنین سختگیری‌ها و نگاه ویژه دولتها در خصوص بهبود وضعیت زیست محیطی، صنایع را به سمت تکنولوژی‌های سودمندتر سوق داده است. بنابراین بکارگیری تکنولوژی‌های جدید که منجر به افزایش کیفیت محصول و کاهش هزینه بدون آسیب به محیط زیست شوند، مطلوب خواهند بود. در سال های اخیر استفاده از امواج فراصوتی توان زیاد با توجه به نداشتن آلودگی صوتی، برای بهبود فرآیندهای مهندسی بسیار مورد توجه صنایع مختلف قرارگرفته‌است. موثر بودن این امواج در صنایع ساخت و تولید نظیر کاهش نیروهای ماشینکاری، افزایش صافی سطح و ریزدانه کردن فلزات در حین انجماد، انگیزه نویسندگان برای استفاده از آن در صنعت ساختمان شد. بدین منظور در این تحقیق، استفاده از امواج توان زیاد فراصوتی در زمانهای متفاوت و فرکانس 20 کیلو هرتز در متراکم‌سازی بتن و تاثیر آن بر مقاومت فشاری بتن مورد بررسی قرار گرفت. نتایج این تحقیق نشان می‌دهد که استفاده از امواج توان زیاد فراصوتی به عنوان یک فرآیند تکمیلی در متراکم سازی بتن تازه، می تواند باعث افزایش مقاومت فشاری بتن تا 10 درصد شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of High power ultrasonic-assisted in increasing compressive strength of concrete

نویسندگان [English]

  • صابر صفار 1
  • seyed mohsen karimi 2
  • majid safehian 2
1 Assistant professor at the acoustic group in IRIB university
2 Islamic Azad University Science and Research Branch
چکیده [English]

Today, staying in economic markets depends on maintaining the quality and cost of production due to the intense competition of producers. It has also led governments to take tougher approaches to improve the environmental situation of industries. Therefore, the use of new technologies that leads to maintaining or increasing product quality and reducing costs without harming the environment will be desirable. Today, the use of high-power ultrasonic waves, due to the lack of noise pollution, has been highly regarded by various industries to improve engineering processes. The effectiveness of these waves in the manufacturing and production industries, such as reducing machinery, increasing surface smoothness, grinding metals during freezing, etc., can also be the motivation for its use in the construction industry. Therefore, the widespread use of high-power ultrasonic waves in various fields of engineering and the identification of the positive effects of these waves on the properties of materials and materials is the reason for the present study. For this purpose, for the first time in this study, the use of high ultrasonic power waves with different powers, different times, and a frequency of 20 kHz in concrete compaction and its effect on concrete compressive strength has been investigated. The results of this study show that the use of ultrasonic high-power waves as a complementary process in the compaction of fresh concrete will increase the compressive strength of concrete by up to 10%.

کلیدواژه‌ها [English]

  • Concrete density
  • Concrete Compressive strength
  • High power ultrasound Frequency
  • Noise pollution
[1] Claisse P., A.; "Chapter 26 - Production of durable concrete," in Civil Engineering Materials, P. A. Claisse, Ed. Boston: Butterworth-Heinemann, pp. 275-286, 2016
[2] Navarrete I., Lopez M.; "Understanding the relationship between the segregation of concrete and coarse aggregate density and size," Construction and Building Materials, vol. 149, pp. 741-748, 2017.
[3] Banfill P.,  Teixeira  M., Craik R.; "Rheology and vibration of fresh concrete: Predicting the radius of action of poker vibrators from wave propagation," Cement and Concrete Research, vol. 41, no. 9, pp. 932-941, 2011.
[4] Howes R., Hadi M., South W.; "Concrete strength reduction due to over compaction," Construction and Building Materials, vol. 197, pp. 725-733, 2019.
[5] edini R., Abdullah A., Alizadeh Y.; "Ultrasonic assisted hot metal powder compaction," Ultrasonics Sonochemistry, vol. 38, no. Supplement C, pp. 704-710, 2017.
[6] ASM Metals Handbook "Nondestractive Evaluation and Quality Control". 1989.
[7] Siddiq A., El Sayed T.; "Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations," Ultrasonics, vol. 52, no. 4, pp. 521-529, 2012.
[8] Kuo K., Tsao C.; "Rotary ultrasonic-assisted milling of brittle materials," Transactions of Nonferrous Metals Society of China, vol. 22, pp. 793-800, 2012.
[9] Nategh M., Razavi H., Abdullah A.; "Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning, part I: Kinematics analysis," International Journal of Mechanical Sciences, vol. 63, no. 1, pp. 1-11, 2012.
[10] Fartashvand V., Abdullah A., Ali Sadough Vanini S.; "Effects of high power ultrasonic vibration on the cold compaction of titanium," Ultrasonics Sonochemistry, vol. 36, no. Supplement C, pp. 155-161, 2017.
[11] Kumar S., Wu C., Padhy G., Ding W.; "Application of ultrasonic vibrations in welding and metal processing: A status review," Journal of Manufacturing Processes, vol. 26, no. Supplement C, pp. 295-322, 2017.
[12] Abedini R., Abdullah A., Alizadeh Y.;   "Ultrasonic hot powder compaction of Ti-6Al-4V," Ultrasonics Sonochemistry, vol. 37, 2017.
[13] Xuand J., Wei H.; "Ultrasonic Testing Analysis of Concrete Structure Based on S Transform", journal of  shock and vibration, 2019.
[14] Ghosh R., Sagar P., Sunil A.,  Gupta K., Kumar S.; "Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser", Journal of Building Engineering, Vol 16,pp. 39-44, 2018.
[15] Shen D., Wen C., Zhu P., Wu Y., Yuan J.; "Influence of Barchip fiber on early-age autogenous shrinkage of high strength concrete", journal of Construction and Building Materials, Vol 256,pp. 119-223 2020.
[16] Hong S., Yoon S., Kim J., Lee C. , Kim S., Lee Y.; "Evaluation of Condition of Concrete Structures Using Ultrasonic Pulse Velocity Method", Appl. Sci., 10(2), 706, 2020.
[17] Lee T., Lee J.; " Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age", Construction and Building Materials,  Vol. 252, 119027, 2020.
[18] Sriramadasu R., Banerjee S., Lu Y.; "Sensitivity of longitudinal guided wave modes to pitting corrosion of rebars embedded in reinforced concrete", Construction and Building Materials, Vol 239, 117855, 2020.
[19] Chena D., Montano V., Huoa L., Fana S., Song G.; "Detection of subsurface voids in concrete-filled steel tubular (CFST) structure using percussion approach", Construction and Building Materials, Vol 262, 119761, 2020.
[20] Lootens D., Schumacher M., Liard M., Jones S., Bentz D., Ricci S., Meacci V.; "Continuous strength measurements of cement pastes and concretes by the ultrasonic wave reflection method", Construction and Building Materials, Vol 242, 117902, 2020.
[21] Christiane R.; "Einfluss von Power-Ultraschall auf das Fließ- und Erstarrungsverhalten von Zementsuspensionen", Tagungsband der 17. Internationalen Baustofftagung ibausil, Hrsg. Finger-Institut für Baustoffkunde, Bauhaus-Universität Weimar, S. 1 – 0259 – 1 - 0264.
[22] Christiane R.;  "Einfluss von Power-Ultraschall auf das Fließ- und Erstarrungsverhalten von Zementsuspensionen", Tagungsband der 17. Internationalen Baustofftagung ibausil, Hrsg. Finger-Institut für Baustoffkunde, Bauhaus-Universität Weimar, S. 1 – 0259 – 1 – 0264.
[23] Liu Q., Song Z., Cai H. , Zhou A. , Wang W., Jiang L., Liu Y., Zhang Y., Xu N.; "Effect of Ultrasonic Parameters on Electrochemical Chloride Removal and Rebar Repassivation of Reinforced Concrete", journal of Materials, vol 12, 2774, 2019.
[24] Ganjian E., Ehsani A., Mason T., Tyrer M.; "Application of power ultrasound to cementitious materials: Advances, issues and perspectives", journal of Materials & Design, Vol 160pp. 503-513, 2018.
[25] Salvador R., Cavalaro S., Segura I., Hernández M., Ranz J., Figueiredo A.; "Relation between ultrasound measurements and phase evolution in accelerated cementitious matrices", Mater. Des., 113, pp. 341-352, 2017.
[26] Iranian National Standardization organization (INSO 4977, 1St-Revision 2015)-Aggregate-Sieve Analysis of fine and coarse aggregates-Test method.
[27] Iranian National Standardization organization (INSO 4980, 2nd-Revision 2018)-Aggregate-Determination of density, relative density (Specific gravity) and water absorption of fine aggregates-Test method.
[28] Iranian National Standardization organization (INSO 4982, 2nd-Revision 2017)-Aggregate-Determination of density, relative density (Specific gravity) and water absorption of coarse aggregates-Test method.
[29] Iranian National Standardization organization (INSO 1608-2, 1st edition 2015)-Hardened concrete- part2: Making and curing specimens for strength tests.