مطالعه آزمایشگاهی اثر محصورشدگی فعال الیاف آرامید بر عملکرد لرزه‌ای ستون‌های بتن مسلح تحت اثر هم‌زمان بارهای محوری و جانبی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران

10.22124/jcr.2023.21068.1533

چکیده

یکی از راهکارهای مناسب تقویت سازه‌های بتنی افزایش محصورشدگی بتن است. بتن محصورشده با الیاف پلیمر آرامید (AFRP) دارای رفتار مناسبی ازنظر افزایش ظرفیت باربری سازه و شکل‌پذیری است. استفاده از عامل محصورشدگی فعال در اعضای بتنی باعث بهبود عملکرد آن‌ها تحت نیروی فشاری می‌شود. در این تحقیق نتایج بررسی رفتار ستون‌های بتن مسلح دارای محصورشدگی فعال با استفاده از نوارهایی با جنس الیاف AFRP تحت اثر مشترک بار فشاری محوری و بار جانبی رفت و برگشتی ارائه می‌گردد. علاوه بر این ستون‌ها، از یک ستون بدون محصورشدگی (SCR) به‌عنوان نمونه شاهد استفاده‌شده است. نتایج این پژوهش گویای آن است که ستون‌های دارای محصورشدگی فعال در مقایسه با ستون‌ شاهد به دلیل جلوگیری از اتساع بتن و فشار به وجود آمده توسط نوارهای مجزای الیافی، ازنظر مقاومت فشاری تا 21 درصد و انرژی الاستیک تجمعی تا 125 درصد بهبود می‌یابند، لذا می‌توان از این روش در تقویت ستون‌های بتن مسلح استفاده کرد..

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental study on the effect of active confinement of AFRP fibers on the seismic performance of reinforcement concrete columns under axial and lateral loads

نویسندگان [English]

  • shahla Jeddian
  • Mohammad Ghazi
  • mehdi esfandi sarafraz
Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Fiber Reinforced Polymers (FRP) are often used for structural repairs to improve the strength and ductility of the structures. Previous studies have shown that utilizing active confinement in concrete structures can improve the seismic behavior of concrete columns under pressure. In this study, the behavior of concrete columns actively confined by AFRP fibers was investigated under the combined effects of axial compressive and cyclic lateral loads. Two concrete columns were actively confined by AFRP strips. In addition, a non-confined column (SCR) was utilized as a control specimen. Then all specimens were tested under axial and lateral cyclic loading. Experimental results showed that the ultimate compressive strength and axial strain of specimens with active confinement are improved compared to the SCR specimen. Also, due to the increased number of small cracks in the specimen, a higher extent of energy was absorbed under the applied loading. The loading protocol caused no rupture in the AFRP strips, and no shear crack and brittle failure in the specimens were observed.

کلیدواژه‌ها [English]

  • Active confinement
  • Polyamide polymer fibers
  • Seismic performance
  • Ductility
[1] A. Mirmiran, M. Shahawy, Behavior of Concrete Columns Confined by Fiber Composites, Journal of Structural Engineering, 123 (1997) 583-590.
[2] Y. Xiao, H. Wu, Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets, Journal of Materials in Civil Engineering, 12 (2000) 139-146.
[3] P.P. Sankholkar, C.P. Pantelides, T.A. Hales, Confinement Model for Concrete Columns Reinforced with GFRP Spirals, Journal of Composites for Construction, 22 (2018) 04018007.
[4] A. Kaya, M. Dawood, B. Gencturk, Repair of corroded and buckled short steel columns using concrete-filled GFRP jackets, Construction and Building Materials, 94 (2015) 20-27.
[5] A. Kashi, A.A. Ramezanianpour, F. Moodi, Durability evaluation of retrofitted corroded reinforced concrete columns with FRP sheets in marine environmental conditions, Construction and Building Materials, 151 (2017) 520-533.
[6] A. Saljoughian, D. Mostofinejad, Behavior of RC columns confined with CFRP using CSB method under cyclic axial compression, Construction and Building Materials, 235 (2020) 117786.
[7] Mohammad R. Ehsani, Hamid Saadatmanesh, C.T. Nelson, Transfer and Flexural Bond Performance of Aramid and Carbon FRP Tendons, PCI Journal, 42 (1997).
[8] W. Xie, Y. Chen, S. Han, W. Zhou, K. He, Research on I steel reinforced concrete-filled GFRP tubular short columns, Thin-Walled Structures, 120 (2017) 282-296.
[9] P. Li, T. Yang, Q. Zeng, F. Xing, Y. Zhou, Axial stress–strain behavior of carbon FRP-confined seawater sea-sand recycled aggregate concrete square columns with different corner radii, Composite Structures, 262 (2021) 113589.
[10] A. Fam, S.H. Rizkalla, Behavior of axially loaded concrete-filled circular fiber-reinforced polymer tubes, ACI Structural Journal, 98 (2001) 280-289.
[11] T. Vincent, T. Ozbakkaloglu, Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete, Composites Part B: Engineering, 50 (2013) 413-428.
[12] T. Vincent, T. Ozbakkaloglu, Compressive Behavior of Prestressed High-Strength Concrete-Filled Aramid FRP Tube Columns: Experimental Observations, Journal of Composites for Construction, 19 (2015) 04015003.
[13] Q. Cao, Z. Ma, Behavior of Externally Fiber-Reinforced Polymer Reinforced Shrinkage-Compensating Concrete Beams, ACI Structural Journal, 108 (2011).
[14] Q. Cao, Z. Ma, Structural behavior of FRP enclosed shrinkage-compensating concrete (SHCC) beams made with different expansive agents, Construction and Building Materials, 75 (2015) 450-457.
[15] Q. Cao, T. Jinju, Z. Ma, Z. Wu, Axial Compressive Behavior of CFRP-Confined Expansive Concrete Columns, ACI Structural Journal, 114 (2017) 475-485.
[16] Q. Cao, H. Li, Z. Lin, Study on the active confinement of GFRP-confined expansive concrete under axial compression, Construction and Building Materials, 227 (2019) 116683.
[17] R. Suhail, G. Amato, D.P. McCrum, Active and passive confinement of shape modified low strength concrete columns using SMA and FRP systems, Composite Structures, 251 (2020) 112649.
]18[ معاونت برنامه­ریزی و نظارت راهبردی رییس جمهور، راهنمای روش­ها و شیوه­های بهسازی لرزه­ای ساختمان­های موجود و جزئیات اجرایی (نشریه شماره 524 (،1389.
[19] T. Fanaradelli, T. Rousakis, A. Karabinis, Reinforced concrete columns of square and rectangular section, confined with FRP–Prediction of stress and strain at failure, Composites Part B: Engineering, 174 (2019) 107046.
[20] A.C.I.C. 211, Guide for Selecting Proportions for No-Slump Concrete 2009.
[21] T. Yamakawa, K. Nasrollahzadeh, H. Satoh, Seismic or emergency retrofit of RC short columns by use of prestressed aramid fiber belts as external hoops, Journal of Structural and Construction Engineering (Transactions of AIJ), 550 (2001) 135-141.
[22] Guide for testing reinforced concrete structural elements under slowly applied simulated seismic loads (ACI 374.2R-13), ACI Committee 374, 2013, pp. 1–39.
[23] A.K. Chopra, Dynamics of structures Theory and Applications to Earthquake Engineering. , 3rd Edition ed., Prentice Hall, 2007.
[24] ASTM International, Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression.,  ASTM C469 / C469M-14e1,, West Conshohocken, PA, , 2014.