[1] Nasr D., Pakshir A.H., Ghayour H., The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali-activated slag (AAS) mortars, Constr. and Build. Mater. 190, 108-119, 2018.
[2] Aliabdo A.A., Abd Elmoaty A.E.M., Emam M.A., Factors affecting the mechanical properties of alkali-activated ground granulated blast furnace slag concrete, Const. Build. Mater. 197, 339-355, 2019.
[3] Bensted J., Brough A.R., Chemical degradation of concrete, chap. 4, 2007, https://doi.org/10.1533/9781845693398.86.
[5] Ben Haha M., Lothenbach B., Le Saout G., Winnefeld F., Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO, Cem. Conc. Res. 41, 955-963, 2011.
[6] Khalil M.G., Elgabbas F., El-Feky M.S., El-Shafie H., Performance of geopolymer mortar cured under ambient temperature, Const. Build. Mater. 242, 118090, 2020.
[7] Ye H., Chen Z., Huang L., Mechanism of sulfate attack on alkali-activated slag: The role of activator composition, Cem. Conc. Res., 125, 105868, 2019.
[8] Thunuguntla C.S., Gunneswara Rao T.D., Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete, Cons. Build. Mater. 193, 173–188, 2018.
[9] Heikal M., Nassar M.Y., El-Sayed G., Ibrahim S.M., Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag, Cons. Build. Mater. 69, 60–72, 2014.
[10] Bernal S.A., San Nicolas R., J. Myers R., de Gutiérrez R.M., Puertas F., van Deventer J.S.J., Provis J.L., MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders, Cem. Conc. Res. 57, 33–43, 2014.
[11] Bondar D., Ma Q., M. Soutsos M., Basheer M., Provis J.L., Nanukuttan S., Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity, Cons. Build. Mater. 190, 191–199, 2018.
[12] Bakharev T., Sanjayan J.G., Cheng Y.-B., Effect of elevated temperature curing on properties of alkali-activated slag concrete, Cem. Conc. Res. 29, 1619–1625, 1999.
[13] Aliques-Granero J., Tohoue Tognonvi M., Tagnit-Hamou A., Durability study of AAMs: sulfate attack resistance, Const. Build. Mater. 229, 117100, 2019.
[14] El-Feky M. S., Kohail M., El-Tair A.M., Serag M.I., Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes, Cons. Build. Mater., 233, 117268, 2020.
[15] Bilim C., Karahan O., Atiș C. D., Ikentapar S., Effects of chemical admixtures and curing conditions on some properties of alkali-activated cementless slag mixtures, KSCE J. Civ. Eng., 19, 733–741, 2015.
[16] Chi M., Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete, Cons. Build. Mater., 35, 240–245, 2012.
[17] Ahmad S., Umar A., Masood A., Nayeem M., Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume, Adv. in Conc. Cons., 7 (1), 31-37, 2019.
[18] Imam A., Kumar V., Srivastava V., Review study towards effect of Silica Fume on the fresh and hardened properties of concrete, Adv. in Conc. Cons., 6(2), 145-157, 2018.
[19] Rostami M., Behfarnia K., The effect of silica fume on the durability of alkali-activated slag concrete, Const. and Build. Mater., 134, 262–268, 2017.
[20] Zamanabadi S. N., Zareei S.A., Shoaei P., Ameri F., Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: Effect of alkali activator solution on physical and mechanical properties, Cons. Build. Mater., 229, 116911, 2019.
[21] Ramezanianpour A. A., Moeini M.A., Mechanical and durability properties of alkali-activated slag coating mortars containing nano silica and silica fume, Cons. Build. Mater., 163, 611-621, 2018.
[22] Shariati M., Shariati A., Nguyen Thoi Trung, Shoaei P., Ameri F., Bahrami N., Zamanabadi S. N., Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics, Const. and Build. Mater., 267, 120886, 2021.
[23] ASTM C778-17, Standard Specification for Standard Sand, ASTM International; West Conshohocken, PA, 2017.
[24] Tole I., Rajczakowska M., Kothari A., Cwirzen A., Geopolymer based on mechanically activated air-cooled blast furnace slag, materials, 13, 1134, 2020.
[25] ASTM C1012-04 (2004), Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution, ASTM International; West Conshohocken, PA.
[26] Rakhimova N. R. and Rakhimov R. Z., Alkali-activated slag-blended cements with silica supplementary materials, Inorganic Materials, 48(9), 960-964, 2012.
[27] Liew K. M., Sojobi A. O., Zhang L. W., Green concrete: Prospects and challenges, Cons. Build. Mater. 156, 1063-1095, 2017.
[28] Aydin S., Baradan B., Mechanical and microstructural properties of heat-cured alkali-activated slag mortars, Mater. & Des. 35, 374-383, 2012.
[29] Chi M., J. Chang J., Huang R., Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar, Adv. in Civ. Eng., 2012, 579732, 1-7, 2012.
[30] Elyamany H. E., Abd Elmoaty A. E. M., Elshaboury A. M., Setting time and 7-day strength of geopolymer mortar with various binders, Cons. Build. Mater., 187, 974-983, 2018.
[31] Rajarajeswari A., Dhinakaran G., Compressive strength of GGBFS based GPC under thermal curing, Cons. Build. Mater., 126, 552-559, 2016.
[32] Sameti N., Ghiasvand E., Zeighami E., Mirhosseini S., Assessment of elevated temperature curing on compressive strength and setting time of alkali activated slag mortar and paste, associated with silica fume, Concrete Research, 13(4), 111-121, 2020.
[33] Yu X., Chen D., Feng J., Zhang Y., Liao Y., Behavior of mortar exposed to different exposure conditions of sulfate attack, Ocean Eng., 157, 1–12, 2018.
[34] Şahan Arel H., Thomas B.S., The effects of nano- and micro-particle additives on the durability and mechanical properties of mortars exposed to internal and external sulfate attacks, Results in Physics, 7, 843–851, 2017.
[35] Karakoç M.B., Türkmen I., Maraş M.M., Kantarci F., Demirboğa R., Sulfate resistance of ferrochrome slag based geopolymer concrete, Ceramics International 42, 1254–1260, 2016.
[36] Beltrame N. Ap. M., Angulski da Luz C., Perardt M., Doug Hooton R., Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates, Cons. Build. Mater., 238, 117710, 2020.
[37] Tokpatayeva R., Olek J., Jain J., Seth A., De Cristofaro N., Sulfate Resistance Study of Carbonated Low-Calcium Silicate Systems, Sulfate Resistance Study of Carbonated Low-Calcium Silicate Systems, Sixth International Conference on Durability of Concrete Structures, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom, 2, 18 – 20, 2018.
[38] Rozière E., Loukili A., El Hachem R., Grondin F., Durability of concrete exposed to leaching and external sulphate attacks, Cem. Conc. Res., 39(12), 1188-1198, 2009.
[39] Komljenovic´ M., Bašcˇarevic´ Z., Marjanovic´ N., Nikolic V., External sulfate attack on alkali-activated slag, Cons. Build. Mater. 49, 31–39, 2013.
[40] Huang Q., Zhu X., Zhao L., Zhao M., Liu Y., Zeng X., Effect of nanosilica on sulfate resistance of cement mortar under partial immersion, Cons. Build. Mater. 231, 117180, 2020.
[41] Part W.K., Ramli M., Cheah C.B., Handbook of Low Carbon Concrete, Chap. 11, 2017.
[42] Najjar M.F., Nehdi M.L., Soliman A.M., Azabi T.M., Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack, Cons. Build. Mater., 137, 141–152, 2017.
[43] Zhang J., Shi C., Zhang Z., Ou Z., Durability of alkali-activated materials in aggressive environments: A review on recent studies, Cons. Build. Mater., 152, 598–613, 2017.
[44] Thiery M., Dangla P., Belin P., Habert G., Roussel N., Carbonation kinetics of a bed of recycled concrete aggregates: A laboratory study on model materials, Cem. Conc. Res., 46, 50–65, 2013.
[45] Noushini A., Castel A., The effect of heat curing on transport properties of low-calcium fly ash based geopolymer concrete, Cons. Build. Mater. 112, 464-477, 2016.
[46] Van den Heede P., De Schepper M., De Belie N., Accelerated and natural carbonation of concrete with high volumes of fly ash: chemical, mineralogical and microstructural effects, R. Soc. open sci., 6: 181665, 2019.
[47] Mayorga I.C., Astilleros J.M., Fernández-Díaz L., Precipitation of CaCO3 polymorphs from aqueous solutions: The role of pH and sulphate groups, Minerals, 9(178), 2019.
[48] Wardhono A., Gunasekara C., Law D. W, Setunge S., Comparison of long-term performance between alkali activated slag and fly ash geopolymer concretes, Cons. Build. Mater., 143, 272–279, 2017.
[49] Ye H., Radlin´ska A., Neves J., Drying and carbonation shrinkage of cement paste containing alkalis, Mater. Struct., 50:132, 2017.