بررسی اثر دمای عمل آوری بر دوام سولفاتی ملات قلیافعال سرباره ای حاوی دوده سیلیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران.

2 استادیار گروه عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران/استادیار گروه عمران، دانشگاه بوعلی سینا.

3 استادیار گروه عمران دانشگاه آزاد اراک

4 استادیار گروه عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران.

10.22124/jcr.2021.20125.1507

چکیده

این مطالعه به منظور بهبود احتمالی عملکرد ملات قلیا فعال سرباره‌ای در مواجهه با محلول سدیم سولفات ترتیب داده شد. در این راستا دوده سیلیسی به عنوان جایگزین سرباره با سطوح جایگزینی 0، 5 و 10% به کار گرفته شد و نمونه‌ها در دماهای 2±23، 40، 60 و ℃80 عمل‌آوری شدند. به منظور پی‌بردن به رفتار نمونه‌ها از آزمایش-های نغییر طول وتغییر جرم و جهت شناسایی ریزساختار و محصولات تشکیل شده در خمیر سخت شده آنها، از آزمایش‌های تصویربرداری میکروسکوپ الکترونی روبشی و آنالیز پراش اشعه ایکس استفاده شد. نتایج حاصل حاکی از تاثیر مثبت عمل‌آوری حرارتی و جایگزینی دوده سیلیسی بر دوام ملات قلیا فعال سرباره‌ای بود. در این میان به‌کارگیری هم‌زمان جایگزینی دوده سیلیسی به میزان 5% و عمل‌آوری حرارتی با دمای ℃80 بهترین تاثیر را بر عملکرد ملات قلیا فعال سرباره‌ای به لحاظ مقاومت سولفاتی در برداشت. ملات قلیا فعال سرباره‌ای نسبت به ملات با پایه سیمان پرتلند از نظر مقاومت در برابر حمله سولفاتی از برتری چشمگیری برخوردار بود. نتایج آزمایش‌های تغییر طول و جرم برای مقایسه‌ی نمونه‌های ملات قلیا فعال سرباره‌ای کافی نبود؛ به نحوی که با افزودن نتایج آزمایش‌های تصویربرداری میکروسکوپ الکترونی روبشی و آنالیز پراش اشعه ایکس این امر میسر گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment the effect of curing temperature on sulfate resistance of alkali activated slag mortar containing silica fume

نویسندگان [English]

  • Naser Sameti 1
  • Ebrahim Ghiasvand 2
  • Ehsanollah Zeighami 3
  • Seyyed Mohammad Mirhosseini 4
1 Ph.D. student, Department of civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran.
2 Buali Sina University
3 Department of civil Engineering, Arak Branch, Islamin Azad University, Arak, Iran
4 Assistant Professor, Department of civil Engineering Arak Branch, Islamic Azad University, Arak, Iran.
چکیده [English]

This study was conducted to probable improvement of the performance of alkali activated slag mortar exposed to sodium sulfate solution. In this regard, the joint effect of silica fume replacing at levels of 0, 5 and 10% and curing at 23 ± 2, 40, 60 and 80 °C on the durability of alkali activated slag mortar against high concentration sulfate medium was tested. In order to investigate the behavior of the samples, length change and mass change tests were used and to identify the microstructure and products formed in their hardened paste, scanning electron microscopy imaging and X-ray diffraction analysis were performed. The results showed the positive effect of heat treatment and silica fume replacement on the durability of alkali activated slag mortar. Simultaneous application of 5% silica fume replacement and heat treatment with a temperature of 80℃ had the best effect on the performance of activated alkaline slag mortar in terms of sulfate resistance. Alkali activated mortar was completely superior to ordinary Portland cement in terms of resistance to sulfate medium. The results of length and mass change experiments were not enough to compare alkali activated slag mortar samples. This was made possible by adding the results of scanning electron microscopy imaging test and X-ray diffraction analysis.

کلیدواژه‌ها [English]

  • Alkali-activated slag
  • Heat curing
  • Micro silica
  • Sulfate attack
[1] Nasr D., Pakshir A.H., Ghayour H., The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali-activated slag (AAS) mortars, Constr. and Build. Mater. 190, 108-119, 2018.
[2] Aliabdo A.A., Abd Elmoaty A.E.M., Emam M.A., Factors affecting the mechanical properties of alkali-activated ground granulated blast furnace slag concrete, Const. Build. Mater. 197, 339-355, 2019.
[3] Bensted J., Brough A.R., Chemical degradation of concrete, chap. 4, 2007, https://doi.org/10.1533/9781845693398.86.
[4] I. Yuksel, Waste and Supplementary Materials in Concrete, chap. 12, 2018, https://doi.org/10.1016/B978-0-08-102156-9.00012-2.
[5] Ben Haha M., Lothenbach B., Le Saout G., Winnefeld F., Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO, Cem. Conc. Res. 41, 955-963, 2011.
[6] Khalil M.G., Elgabbas F., El-Feky M.S., El-Shafie H., Performance of geopolymer mortar cured under ambient temperature, Const. Build. Mater. 242, 118090, 2020.
[7] Ye H., Chen Z., Huang L., Mechanism of sulfate attack on alkali-activated slag: The role of activator composition, Cem. Conc. Res., 125, 105868, 2019.
[8] Thunuguntla C.S., Gunneswara Rao T.D., Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete, Cons. Build. Mater. 193, 173–188, 2018.
[9] Heikal M., Nassar M.Y., El-Sayed G., Ibrahim S.M., Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag, Cons. Build. Mater. 69, 60–72, 2014.
[10] Bernal S.A., San Nicolas R., J. Myers R., de Gutiérrez R.M., Puertas F., van Deventer J.S.J., Provis J.L., MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders, Cem. Conc. Res. 57, 33–43, 2014.
[11] Bondar D., Ma Q., M. Soutsos M., Basheer M., Provis J.L., Nanukuttan S., Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity, Cons. Build. Mater. 190, 191–199, 2018.
[12] Bakharev T., Sanjayan J.G., Cheng Y.-B., Effect of elevated temperature curing on properties of alkali-activated slag concrete, Cem.  Conc. Res. 29, 1619–1625, 1999.
[13] Aliques-Granero J., Tohoue Tognonvi M., Tagnit-Hamou A., Durability study of AAMs: sulfate attack resistance, Const. Build. Mater. 229, 117100, 2019.
[14] El-Feky M. S., Kohail M., El-Tair A.M., Serag M.I., Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes, Cons. Build. Mater., 233, 117268, 2020.
[15] Bilim C., Karahan O., Atiș C. D., Ikentapar S., Effects of chemical admixtures and curing conditions on some properties of alkali-activated cementless slag mixtures, KSCE J. Civ. Eng., 19, 733–741, 2015.
[16] Chi M., Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete, Cons. Build. Mater., 35, 240–245, 2012.
[17] Ahmad S., Umar A., Masood A., Nayeem M., Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume, Adv. in Conc. Cons., 7 (1), 31-37, 2019.
[18] Imam A., Kumar V., Srivastava V., Review study towards effect of Silica Fume on the fresh and hardened properties of concrete, Adv. in Conc. Cons., 6(2), 145-157, 2018.
[19] Rostami M., Behfarnia K., The effect of silica fume on the durability of alkali-activated slag concrete, Const. and Build. Mater., 134, 262–268, 2017.
[20] Zamanabadi S. N., Zareei S.A., Shoaei P., Ameri F., Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: Effect of alkali activator solution on physical and mechanical properties, Cons. Build. Mater., 229, 116911, 2019.
[21] Ramezanianpour A. A., Moeini M.A., Mechanical and durability properties of alkali-activated slag coating mortars containing nano silica and silica fume, Cons. Build. Mater., 163, 611-621, 2018.
[22] Shariati M., Shariati A., Nguyen Thoi Trung, Shoaei P., Ameri F., Bahrami N., Zamanabadi S. N., Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics, Const. and Build. Mater., 267, 120886, 2021.
[23] ASTM C778-17, Standard Specification for Standard Sand, ASTM International; West Conshohocken, PA, 2017.
[24] Tole I., Rajczakowska M., Kothari A., Cwirzen A., Geopolymer based on mechanically activated air-cooled blast furnace slag, materials, 13, 1134, 2020.
[25] ASTM C1012-04 (2004), Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution, ASTM International; West Conshohocken, PA.
[26] Rakhimova N. R. and Rakhimov R. Z., Alkali-activated slag-blended cements with silica supplementary materials, Inorganic Materials, 48(9), 960-964, 2012.
[27] Liew K. M., Sojobi A. O., Zhang L. W., Green concrete: Prospects and challenges, Cons. Build. Mater. 156, 1063-1095, 2017.
[28] Aydin S., Baradan B., Mechanical and microstructural properties of heat-cured alkali-activated slag mortars, Mater. & Des. 35, 374-383, 2012.
[29] Chi M., J. Chang J., Huang R., Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar, Adv. in Civ. Eng., 2012, 579732, 1-7, 2012.
[30] Elyamany H. E., Abd Elmoaty A. E. M., Elshaboury A. M., Setting time and 7-day strength of geopolymer mortar with various binders, Cons. Build. Mater., 187, 974-983, 2018.
[31] Rajarajeswari A., Dhinakaran G., Compressive strength of GGBFS based GPC under thermal curing, Cons. Build. Mater., 126, 552-559, 2016.
[32] Sameti N., Ghiasvand E., Zeighami E., Mirhosseini S., Assessment of elevated temperature curing on compressive strength and setting time of alkali activated slag mortar and paste, associated with silica fume, Concrete Research, 13(4), 111-121, 2020.
[33] Yu X., Chen D., Feng J., Zhang Y., Liao Y., Behavior of mortar exposed to different exposure conditions of sulfate attack, Ocean Eng., 157, 1–12, 2018.
[34] Şahan Arel H., Thomas B.S., The effects of nano- and micro-particle additives on the durability and mechanical properties of mortars exposed to internal and external sulfate attacks, Results in Physics, 7, 843–851, 2017.
[35] Karakoç M.B., Türkmen I., Maraş M.M., Kantarci F., Demirboğa R., Sulfate resistance of ferrochrome slag based geopolymer concrete, Ceramics International 42, 1254–1260, 2016.
[36] Beltrame N. Ap. M., Angulski da Luz C., Perardt M., Doug Hooton R., Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates, Cons. Build. Mater., 238, 117710, 2020.
[37] Tokpatayeva R., Olek J., Jain J., Seth A., De Cristofaro N., Sulfate Resistance Study of Carbonated Low-Calcium Silicate Systems, Sulfate Resistance Study of Carbonated Low-Calcium Silicate Systems, Sixth International Conference on Durability of Concrete Structures, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom, 2, 18 – 20, 2018.
[38] Rozière E., Loukili A., El Hachem R., Grondin F., Durability of concrete exposed to leaching and external sulphate attacks, Cem. Conc. Res., 39(12), 1188-1198, 2009.
[39] Komljenovic´ M., Bašcˇarevic´ Z., Marjanovic´ N., Nikolic V., External sulfate attack on alkali-activated slag, Cons. Build. Mater. 49, 31–39, 2013.
[40] Huang Q., Zhu X., Zhao L., Zhao M., Liu Y., Zeng X., Effect of nanosilica on sulfate resistance of cement mortar under partial immersion, Cons. Build. Mater. 231, 117180, 2020.
[41] Part W.K., Ramli M., Cheah C.B., Handbook of Low Carbon Concrete, Chap. 11, 2017.
[42] Najjar M.F., Nehdi M.L., Soliman A.M., Azabi T.M., Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack, Cons. Build. Mater., 137, 141–152, 2017.
[43] Zhang J., Shi C., Zhang Z., Ou Z., Durability of alkali-activated materials in aggressive environments: A review on recent studies, Cons. Build. Mater., 152, 598–613, 2017.
[44] Thiery M., Dangla P., Belin P., Habert G., Roussel N., Carbonation kinetics of a bed of recycled concrete aggregates: A laboratory study on model materials, Cem. Conc. Res., 46, 50–65, 2013.
[45] Noushini A., Castel A., The effect of heat curing on transport properties of low-calcium fly ash based geopolymer concrete, Cons. Build. Mater. 112, 464-477, 2016.
[46] Van den Heede P., De Schepper M., De Belie N., Accelerated and natural carbonation of concrete with high volumes of fly ash: chemical, mineralogical and microstructural effects, R. Soc. open sci., 6: 181665, 2019.
[47] Mayorga I.C., Astilleros J.M., Fernández-Díaz L., Precipitation of CaCO3 polymorphs from aqueous solutions: The role of pH and sulphate groups, Minerals, 9(178), 2019.
[48] Wardhono A., Gunasekara C., Law D. W, Setunge S., Comparison of long-term performance between alkali activated slag and fly ash geopolymer concretes, Cons. Build. Mater., 143, 272–279, 2017.
[49] Ye H., Radlin´ska A., Neves J., Drying and carbonation shrinkage of cement paste containing alkalis, Mater. Struct., 50:132, 2017.