بررسی آزمایشگاهی تاثیر استفاده از الیاف فولادی بر رفتار خمشی تیرهای بتنی پیش‌تنیده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آیت الله بروجردی، بروجرد، ایران

2 دانشیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بوعلی سینا، همدان، ایران.

10.22124/jcr.2025.30262.1698

چکیده

بتن مورد استفاده در اعضای پیش‌تنیده دارای مقاومت بالاتری نسبت به بتن مصرفی در سازه‌های بتن‌آرمه معمولی است و بتن‌های با مقاومت بالا از رفتار مقداری متفاوت در مقایسه با بتن‌های معمولی برخوردار می‌باشند. با افزایش مقاومت، شکل‌پذیری بتن کمتر و حالت شکنندگی در آن بیشتر می‌شود. یک گام مهم در جهت غلبه بر این مشکل، استفاده از الیاف در طرح مخلوط بتن است. هدف از انجام این پژوهش،‌ استفاده از الیاف در طرح مخلوط بتن مصرفی در ساخت نمونه‌های پیش‌تنیده و انجام مجموعه‌ای از آزمایش‌ها، به‌منظور بررسی اثر الیاف مورد استفاده بر ظرفیت باربری و عملکرد سازه‌ای نمونه‌های پیش‌تنیده مورد مطالعه است. برای این منظور 3 نمونه تیر بتنی به‌صورت پیش-تنیده‌ی پیش‌کشیده با ابعاد مفروض در آزمایشگاه سازه ساخته شد. الیاف مورد استفاده از نوع الیاف فولادی با بدنه موج‌دار و دوانتها قلاب می‌باشد. نمونه‌ها جهت بررسی تحت آزمایش بارگذاری خمشی به‌روش چهارنقطه‌ای قرار گرفتند و پارامترهای ظرفیت باربری، جذب انرژی، سختی موثر، شکل‌پذیری و خیز وسط دهانه مورد بررسی قرار گرفت. نتایج نشان می‌دهد که اضافه نمودن الیاف فولادی به مخلوط بتن باعث افرایش مقاومت فشاری و کششی بتن گردید و با افزایش درصد حجمی این نوع الیاف، مقاومت‌های فشاری و کششی نیز افزایش پیدا کردند. همچنین پارامترهای مورد نظر جهت بررسی رفتار خمشی تیرهای مورد مطالعه با اضافه نمودن الیاف فولادی به مخلوط بتن افزایش می‌یابند و این افزایش با افزایش درصد حجمی الیاف استفاده شده در مخلوط بتن رابطه مستقیم دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental investigation of the effect of using steel fibers on the flexural behavior of prestressed concrete beams

نویسندگان [English]

  • pouya hassanvand 1
  • Freydoon Rezaie 2
1 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran
2 Associate Professor, Department of Civil Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

The concrete used in prestressed members has higher strength than the concrete used in conventional reinforced concrete structures, and high-strength concretes have somewhat different behavior compared to conventional concretes. As the strength increases, the ductility of the concrete decreases and its brittleness increases. An important step towards overcoming this problem is the use of fibers in the concrete mix design. The purpose of this research is to use fibers in the concrete mix design used in the construction of prestressed specimens and to conduct a series of experiments to investigate the effect of the fibers used on the load-bearing capacity and structural performance of the prestressed specimens under study. For this purpose, 3 concrete beam specimens were fabricated in a prestressed form with given dimensions in the structural laboratory. The fibers used are steel fibers with a corrugated body and hook ends. The specimens were subjected to a four-point bending loading test for examination and the parameters of load-bearing capacity, energy absorption, effective stiffness, ductility and mid-span deflection were investigated. The results show that adding steel fibers to the concrete mix increased the compressive and tensile strengths of concrete and by increasing the volume percentage of this type of fiber, the compressive and tensile strengths also increased. Also, the parameters considered for investigating the bending behavior of the studied beams increase by adding steel fibers to the concrete mixture, and this increase is directly related to the increase in the volume percentage of fibers used in the concrete mixture.

کلیدواژه‌ها [English]

  • Concrete beam
  • prestressing
  • fiber concrete
  • steel fibers
  • flexural behavior
  • load-bearing capacity
[1] DY. Yoo, YS. Yoon, N. Banthia, “Predicting the post-cracking behavior of normal-and high-strength steel fiber-reinforced concrete beams,” Construction and Building Materials, vol. 93, pp. 477-48, 2015.
[2] C. Soranakom, B. Mobasher, “Closed-form solutions for flexural response of fiber-reinforced concrete beams,” Journal of engineering mechanics, vol. 133, no. 8, pp. 933-941, 2007.
[3] W. Lin, T. Yoda, N. Taniguchi, “Application of SFRC in steel–concrete composite beams subjected to hogging moment,” Journal of Constructional Steel Research, vol. 101, pp. 175-183, 2014.
[4] F. Altun, T. Haktanir, K. Ari, “Effects of steel fiber addition on mechanical properties of concrete and RC beams,” Construction Building and Materials, vol. 21, no. 1, pp. 654-661, 2007.
[5] J. Gao, W. Sun, K. Morino, “Mechanical Properties of Steel Fiber-Reinforced, High Strength, Lightweight Concrete,” Cement and Concrete Composite, vol. 19, pp. 307-313, 1997.
[6] K. Marar, Ö. Eren, I. Yitmena, “Compression Specific Toughness of Normal Strength Steel Fiber Reinforced Concrete (NSSFRC) and High Strength Steel Fiber Reinforced Concrete (HSSFRC),” Materials Research, vol. 14, pp. 239-247, 2011.
[7] P.S. Song, S. Hwang, “Mechanical Properties of High Strength Steel Fiber Reinforced Concrete,” Construction and Building Materials, vol. 18, pp. 669-673, 2004.
[8] Ö. Eren, T. Çelik, “Effect of Silica Fume and Steel Fibers on Some Properties of High-Strength Concrete,” Construction and Building Materials, vol. 11, pp. 373-382, 1997.
[9] S. Yazici, G. Inan, V. Tabak, “Effect of Aspect Ratio and Volume Fraction of Steel Fiber on the Mechanical Properties of SFRC,” Construction and Building Materials, vol. 21, pp. 1250-1253, 2007.
[10] W. Tanoli, A. Naseer, F. Wahab, “Effect of Steel Fibers on Compressive and Tensile Strength of Concrete,” International Journal of Advanced Structures and Geotechnical Engineering, vol. 3, pp. 393-397, 2014.
[11] A.T. Noamana, B.H. Abu Bakar, M.D. Hazizan, “Effect of curmb rubber aggregate on toughness and impact energy of steel fiber concrete,” PhD of engineering, Civil Eengineering, Universiti Sains Malaysia, 2016.
[12] R.N. Swamy, S.A. Al-Taan, “Deformation and ultimatestrength in flexure of reinforced concrete beams made with steel fiber concrete,” In Journal Proceedings, vol. 78, no. 5, pp. 395-405, 1981.
[13] D.Y. Yoo, N. Banthia, J.M. Yang, Y.S. Yoon, “Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams,” Construction Building and Materials, vol. 121, pp. 676-685, 2016.
[14] A. Caggiano, M. Cremona, C. Faella, C. Lima, E. Martinelli, “Fracture behavior of concrete beams reinforced with mixed long/short steel fibers,” Construction and Building Materials, vol. 37, pp. 832-840, 2012.
[15] A. Hosseini, D. Mostofinejad, M. Hajialilue-bonab, “Displacement and strain field measurement in steel and RC beams using particle image velocimetry,” Engineering Mechanics, vol. 4, pp. 1-10, 2012.
[16] ACI Committee 544, “Report on Fiber Reinforced Concrete (ACI 544.1R-96- Reapproved 2009),” American Concrete Institute, Farmington Hills, MI, 66, 1996.
[17] R.B. Abdui-Ahad, O.Q. Aziz, “Flexural strength of reinforced concrete T-beams with steel fibers,” Cement Concrete Composite, vol. 21, no. 1, pp. 263-268, 1999.
[18] F. Altun, T. Haktanir, K. Ari, “Effects of steel fiber addition on mechanical properties of concrete and RC beams,” Construction and Building Materials, vol. 21, no. 1, pp. 654-661, 2007.
[19] A. Fatih, A. Bekir, “Investigation of reinforced concrete beams behavior of steel fiber added lightweight concrete,” Construction and Building Materials, vol. 38, no. 1, pp. 575-581, 2013.
[20] S.P. Yap, U.J. Alengaram, K.H. Mo, M.Z. Jumaat, “Ductility behaviours of oil palm shell steel fibre-reinforced concrete beams under flexural loading,” European Journal Environent Civil Engineering, vol. 23, no. 7, pp. 866-878, 2019.
[21] R. Narayanan, I.Y.S. Darwish, “Use of steel fibers as shear reinforcement,” Structural Journal, vol. 84, no. 3, pp. 1125-1132, 1987.
[22] C. Qian, I. Parnaikuni, “Properties of high-strength steel fiber-reinforced concrete beams in bending,” Cement Concrete Composite, vol. 21, no. 1, pp. 73-81, 1999.
[23] A. Jodeiri, R. Quitalig, “Effect of Steel Fibre on Flexural Capacity of Reinforced Concrete Beam,” Journal of Civil Engineering Research, vol. 2, pp. 100-107, 2012.
[24] A. Fatih, H. Tefaru, A. Kamura, “Effects of Steel Fiber Addition on Mechanical Properties of Concrete and RC Beams,” Construction and Building Materials, vol. 21, pp. 654-661, 2005.
[25] K. Marar, Ö. Eren, T. Celik, “Relationship between Impact Energy and Compression Toughness Energy of High-Strength Fiber-Reinforced Concrete,” Materials Letters, vol. 47, pp. 297-304, 2001.
[26] M. Di Prisco, G. Plizzari, L. Vandewalle, “Fiber reinforced concrete: new design perspectives,” Materials and Structures, vol. 42, no. 9, pp. 1261-1281, 2009.
[27] V. Afroughsabet, “High-performance fiber-reinforced concrete: a review,” materials science, vol. 51, pp. 6517-6551, 2016.
[28] B.H oh, J.C. Kim, Y.C. Choi, “Fracture behavior of concrete members reinforced with structural synthetic fibers,” Engineering Fracture Mechanics, vol. 74, pp. 243-257, 2007.
[29] F. Bencardino, L. Rizzuti, G. Spadea, R. Swamy, “Experimental evaluation of fiber reinforced concrete fracture properties,” Composites Part B: Engineering, vol. 41, pp. 17-24, 2010.
[30] A. Caggiano, M. Cremona, C. Faella, C. Lima, E. Martinelli, “Fracture behavior of concrete beams reinforced with mixed long/short steel fibers,” Construction and Building Materials, vol. 37, pp. 832-840, 2012.
[31] M. Alberti, A. Enfedaque, J. Gálvez, “Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fiber length and specimen size,” Engineering Fracture Mechanics, vol. 154, pp. 225-244, 2016.
[32] A. Hosseini, D. Mostofinejad, M. Hajialilue-bonab, “Displacement and strain field measurement in steel and RC beams using particle image velocimetry,” Engineering Mechanics, vol. 4, pp. 1-10, 2012.
[33] UNI 11039-2, “Steel Fiber Reinforced Concrete - Part2: Test Method for Determination of First Crack Strength and Ductility Indexes,” 2003.
[34] EN 12390-3, “Testing Hardened Concrete—Part3: Compressive Strength of Test Specimens,” 2009.
[35] A. Meda, F. Minelli, G.A. Plizzari, “Flexural behavior of RC beams in fiber reinforced concrete,” Composites Part B: Engineering, vol. 43, pp. 2930-2937, 2012.
[36] M.N. Soutsos, T.T. Le, A.P. Lampropoulos, “Flexural performance of fiber reinforced concrete made with steel and synthetic fibers,” Construction and Building Materials, vol. 36, pp. 704-710, 2012.
[37] H.R. Pakravan, M. Latifi, M. Jamshidi, “Hybrid short fiber reinforcement system in concrete: A review,” Construction and building materials. vol. 142, pp. 280-294, 2017.
[38] E. Rahimi, J. Shafaei, M.R. Esfahani, “Experimental Evaluation of Structural Performance of FRC Beams with Hooked Metal and Macro Polymer Fibers at Different Levels of Reinforcement Corrosion,” Amirkabir Journal of Civil Engineering, vol. 53, no. 4. pp. 1275-1294, 2021.
[39] T. Job, A. Ramaswamy, “Crack width in partially prestressed T-beams having steel fibers,” ACI structural journal, vol. 103, no. 4. pp. 568, 2006.
[40] C. Lakavath, S.S. Joshi, S.S. Prakash, “Investigation of the effect of steel fibers on the shear crack-opening and crack-slip behavior of prestressed concrete beams using digital image correlation,” Engineering Structures, vol. 193, p.p. 28-42, 2019.
[41] S.S. Joshi, N. Thammishetti, S.S. Prakash, “Efficiency of steel and macro-synthetic structural fibers on the flexure-shear behaviour of prestressed concrete beams,” Engineering Structures, vol. 171, p.p. 47-55, 2018.
 [42] C. Lakavath, S.S. Prakash, S. Dirar, “Experimental and numerical studies on shear behaviour of macro-synthetic fibre reinforced prestressed concrete beams,” Construction and Building Materials, vol. 291, p. 123313, 2021.
[43] ACI 318-19, “Building Code Requirements for Structural Concrete. Reported by ACI Committee 318,” ACI Standard, 2019.
[44] ASTM Standard C150-07, “Standard Specification for Portland Cement,” ASTM, 2012.
[45] ASTM Standard C494/C494M-17, “Standard Specification for Chemical Admixtures for Concrete,” ASTM, 2020.
[46] ASTM Standard A421/A421M-21, “Standard Specification for Stress-Relieved Steel Wire for Prestressed Concrete,” ASTM, 2021.
[47] ISIRI 1608-3 Standard, “Compressive Strength of Test Specimens- Test Method,” ISIRI, 2015.
[48] ISIRI 6047 Standard, “Determination of the splitting tensile strength of cylindrical concrete specimens– Test method,” ISIRI, 2016.
[49] A. Ghorbani, “Experimental and Analytical Investigation on The Effect of Steel Fibers on The Mechanical Properties and Performance of Fibrous Self-Compacting Concretes,” Journal of Concrete Structures and Materials, vol. 6, no. 2, pp. 115-131, 2021.
[50] A. Duzgun Oguz, G. Rustem, C. Aydin Abdulkadir, “Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete,” Materials Letters, vol. 59, no. 27, pp. 3357-3363, 2005.
[51] A. h. Sahraei Moghadam, A. r. Mirza Goltabar Roshan, “Rheological, mechanical, environmental, and economic comparison of the use of industrial and recycled steel fibers in self-compacting concrete,” Amirkabir Journal of Civil Engineering, vol. 55, no. 7, pp. 1487-1504, 2023.
[52] M. Muhammad Ranjbar, S.H. Ghasemzadeh Mosavinejad, Sh. Charkhtab, M.E Zakeri, M. Arayeshgar, S. Easapour, “Investigation of effect of steel fibers on fresh and hardened properties of self-compacting lightweight concrete with Scoria,” Concrete Research, vol. 8, no. 1(13), pp. 41-54, 2016.
[53] M. Rakhshani mehr, H. Bakhshi, “Effect of Steel Fibers and Concrete Strength on Mechanical specifications of Steel Fiber Reinforced Concrete,” Concrete Research, vol. 8, no. 1(13), pp. 101-112, 2016.
[54] ISIRI 525 Standard, “static modulus of elasticity and Poisson’s radio of concrete in compression- Test Method,” ISIRI, 2015.
[55] T. Paulay, M.J.N. Priestly, “Seismic design of reinforced concrete and masonry buildings,” vol. 768. New York: Wiley, 1992.
[56] H. E. A. E. Elsharkawy, T. Elafandy, A. W. EL-Ghandour, A. A. Abdelrahman, “Behavior of post-tensioned fiber concrete beams,” HBRC Journal, vol. 9, no. 3, pp. 216-226, 2013.
[57] S. K. Padmarajaiah, A. Ramaswamy, “Flexural strength predictions of steel fiber reinforced high-strength concrete in fully/partially prestressed beam specimens,” Cement and Concrete Composites, vol. 26, no. 4, pp. 275-290, 2004.
[58] P.R. Tadepalli, H.B. Dhonde, Y.L. Mo, T.T. Hsu, “Shear strength of prestressed steel fiber concrete I-beams,” International Journal of Concrete Structures and Materials, vol. 9, pp. 267-281, 2015.
[59] S. S. Joshi, N. Thammishetti, S. S. Prakash, “Efficiency of steel and macro-synthetic structural fibers on the flexure-shear behaviour of prestressed concrete beams,” Engineering Structures, vol. 171, pp. 47-55, 2018.
[60] Z. Zheng, Y. Sun, X. Pan, C. Su, J. Kong, “The optimum steel fiber reinforcement for prestressed concrete containment under internal pressure,” Nuclear Engineering and Technology, vol. 54, no. 6, pp. 2156-2172, 2022.