ارزیابی مقاومت فشاری بتن با تلفیق روشهای غیر مخرب و پردازش تصویر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه عمران، پردیس دانشگاهی، دانشگاه گیلان، رشت، ایران

2 گروه عمران، دانشکده فنی، دانشگاه گیلان، رشت، ایران

10.22124/jcr.2025.30497.1703

چکیده

روش های غیر مخرب (NDT) برای تخمین مقاومت فشاری بتن f’c درمحل معمولاً با آزمون‌های سرعت پالس اولتراسونیک و عدد بازتاب چکش، یا ترکیب آن‌ها (SonReb) انجام می‌شود. از آنجاکه دقت این روش‌ها متأثر از شرایط بتن است، تکنیک‌های پردازش تصویر دیجیتال (DIP) به‌عنوان جایگزین‌هایی با حساسیت کمتر به این شرایط مطرح شده‌اند. در این مقاله، تلاش شد تا با رویکرد جدیدی مبتنی بر ترکیب نتایج NDT و DIP یک رابطه قابل‌اعتماد و تعمیم‌پذیر جهت تخمین f’c معرفی شود. برای این منظور، ۱۳۵ نمونه استوانه‌ای استاندارد قالبگیری شد و علاوه برآزمون‌ فشاری و NDT، تعدادی ویژگی‌ توسط DIP از سطوح برش‌خورده آن‌ها استخراج گردید. نتایج به‌دست‌آمده برای آموزش و اعتبارسنجی یک مدل رگرسیون جهت تخمین f’c استفاده شد. به علاوه، آزمون‌های مشابهی بر روی مغزه‌هایی با قطر ۹۵ میلی‌متر که از سه تراز دو نمونه منشوری با ابعاد ۱۸۰۰×۳۰۰×۳۰۰ میلی‌متر حفاری شده بودند، انجام گرفت تا قابلیت معادلات پیشنهادی در تخمین مقاومت بتن اعضای سازه‌ای بررسی شود. یافته‌ها نشان دادند که ترکیب NDT و DIP در تخمین f’c عملکرد بهتری نسبت به مدل SonReb دارد، به‌طوری که مقدار R² برای داده‌های آموزش و اعتبارسنجی به‌ترتیب 90/0 و 94/0 به دست آمد، در حالی که مقدار R² برای SonReb به‌ترتیب 83/0 و 91/0 بود. علاوه بر این، مدل پیشنهادی مقدار f’c مغزه‌های استخراج‌شده از نمونه‌های منشوری را با R² برابر با 88/0 تخمین زد در حالیکه این مقدار برای مدل SonReb برابر با 81/0 به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Concrete Compressive Strength by Integrating Non-Destructive Methods and Image Processing

نویسندگان [English]

  • Hassan Araghi 1
  • Rahmat Madandoust 2
  • Meysam Effati 2
1 Department of Civil Engineering, International Campus, Guilan University. Rasht, Guilan Province, Iran
2 Department of Civil Engineering, Faculty of Technology, Guilan University, Rasht, Guilan Province, Iran
چکیده [English]

Non-destructive testing (NDT) methods for estimating in-situ concrete compressive strength (f’c) are typically performed using ultrasonic pulse velocity tests, rebound hammer tests, or a combination of both (SonReb). Since the accuracy of these methods is affected by the condition of the concrete, digital image processing (DIP) techniques have been proposed as alternatives with reduced sensitivity to these conditions. In this study, an approach based on integrating NDT and DIP results was employed to establish a reliable and generalizable relationship for estimating f’c. To this end, 135 standard cylindrical specimens were cast, and in addition to performing compressive and NDT tests, several features were extracted from their saw-cut surfaces using DIP. The resulting data were then used to train and validate a regression model for estimating f’c. Furthermore, similar tests were conducted on cores with a 95‑mm diameter, drilled from three levels of two specimens (each measuring 1800×300×300 mm), in order to assess the applicability of the proposed equations in estimating the concrete strength of structural members. The findings demonstrated that the combination of NDT and DIP outperformed the SonReb model in estimating f’c, yielding R² values of 0.90 and 0.94 for the training and validation datasets, respectively, compared to 0.83 and 0.91 for SonReb. Additionally, the proposed model estimated the f’c values of cores extracted from columns with an R² of 0.88, whereas the SonReb model achieved an R² of 0.81.

کلیدواژه‌ها [English]

  • Concrete Strength Assessment
  • Image Processing
  • Non-Destructive Tests
  • Rebound Hammer Number
  • Ultrasonic Pulse Velocity
[1] Shariati M, Sulong H R, Arabnejad K. Assessing the strength of reinforced concrete structures through ultrasonic pulse velocity and schmidt rebound hammer test. Scientific Research and Essays 2011; 6(1): 213-220. 10.5897/SRE10.
[2] Hobbs B, Tchoketch Kebir M. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings. Forensic Sci. Int 2007; 167 (2-3): 167-172 10.1016/j.forsciint.2006.06.065
[3] Domagala L., Marganska M., Miazgowicz M. (2024), “Moisture Impact on Static and Dynamic Modulus of Elasticity in Structural Normal-Weight Concretes”, Materials, 17, 3722, https://doi.org/10.3390/ma17153722
[4] Güçlüer K. (2020), “Investigation of the effects of aggregate textural properties on compressive strength (CS) and ultrasonic pulse velocity (UPV) of concrete”, Journal of Building Engineering, 27, 100949, https://doi.org/10.1016/j.jobe.2019.100949
[5] Güneyli H., Karahan S., Güneyli A., “Water content and temperature effect on ultrasonic pulse velocity of concrete”, Russian Journal of Nondestructive Testing, 53, 159-166, https://doi.org/ 10.1134/S1061830917020024
[6] Parihar H. S., Shanker R., Singh V., “Effect of variation of steel reinforcement on ultrasonic pulse velocity prediction in concrete beam”, Materials Today: Proceedings, 65, 1486-1490, https://doi.org/10.1016/j.matpr.2022.04.468
[7] Popovics S. A critique of the ultrasonic pulse velocity method for testing concrete. NDT E Int 1997; 30: 260 10.1016/s0963-8695(97)88958-x
[8] Amini K, Jalalpour M, Delatte N. Advancing concrete strength prediction using non-destructive testing: Development and verification of a generalizable model. Construction and Building Materials 2016; 102: 762-768. 10.1016/j.conbuildmat.2015.10.131
[9] Asteris P G, Mokos V G. Concrete compressive strength using artificial neural networks. Neural Computing and Applications 2019;  32: 11807-11826. 10.1007/s00521-019-04663-2
[10] Rashid K, Waqas R. Compressive strength evaluation by non-destructive techniques: An automated approach in construction industry. Journal of Building Engineering 2017; 12: 147–154. 10.1016/j.jobe.2017.05.010
[11] Kumavat H R, Chandak N R, Patil I T. Factors influencing the performance of rebound hammer used for non-destructive testing of concrete members: A review. Case Studies in Construction Materials 2021; 14: 10.1016/j.cscm.2021.e00491
[12] Lin Y C, Lin Y, Chan C. Use of ultrasonic pulse velocity to estimate strength of concrete at various ages. Magazine of Concrete Research 2016; 68(14):739-749. 10.1680/jmacr.15.00025
[13] Shiuly A, Dutta D. Assessing compressive strengths of mortar and concrete from digital images by machine learning techniques. Frontiers of Structural and Civil Engineering 2022; 10.1007/s11709-022-0819-z
[14] Jang Y, Ahn Y, Kim H Y. Estimating Compressive Strength of Concrete Using Deep Convolutional Neural Networks with Digital Microscope Images. Journal of Computing in Civil Engineering 2019; 33:3. 10.1061/(ASCE)CP.1943-5487.00008
[15] Basyigit C, Comak B, Kilincarslan S, Uncu I S. Assessment of concrete compressive strength by image processing technique. Construction and Building Materials 2012; 37: 526-532. 10.1016/j.conbuildmat.2012.07.055
[16] Dogan G, Arslan M H, Ceylan M. Concrete compressive strength detection using image processing based new test method. Measurement 2017; 109: 137-148. 10.1016/j.measurement.2017.05.051
[17] Waris M I, Plevris V, Mir J, Chairman N, Ahmad A. An alternative approach for measuring the mechanical properties of hybrid concrete through image processing and machine learning. Construction and Building Materials 2022; 328: 126899. 10.1016/j.conbuildmat.2022.126899 
[18] Dogan G, Ozkis A, Arslan M H. A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images. Ingeniería e Investigación 2024; 44: 1. 10.15446/ing.investig.99526
[19] Logothetis L A. Combination of three non-destructive methods for the determination of the strength of concrete, Ph.D. thesis, Athens, Greece, 1978.
[20] Kheder G.F. A two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Mater. Struct. 1999; 32, 410. 10.1007/BF02482712.
[21] Erdal M, Prediction of the compressive strength of vacuum processed concretes using artificial neural network and regression techniques. Scientific Research and Essays 2009; 4(10):1057–1065.
[22] ASTM International. Standard test method for rebound number of hardened concrete. ASTM C805 2018. 10.1520/C0805_C0805M-18A
[23] ASTM International. Standard test method for ultrasonic pulse velocity through concrete. ASTM C597 2022. 10.1520/C0597-22
[24] Khan A, Hashim M, Khan M, Atif Shamim M. An image processing approach to coarse aggregate feature extraction in hardened concrete. Journal of Advance Research in Mechanical and Civil Engineering 2015; 2(4):54. 10.53555/nnmce.v2i4.337
[25] Li M, Wang J, Guo Z, Chen J, Zhao Z, Ren J. Evaluation of the Adhesion between Aggregate and Asphalt Binder Based on Image Processing Techniques Considering Aggregate Characteristics. Materials 2023; 16(14):5097. 10.3390/ma16145097
[26] Gorospe K, Booya E, Ghaednia H, Das S. Strength, Durability, and Thermal Properties of Glass Aggregate Mortars. Journal of Materials in Civil Engineering 2019; 31(10):04019231. 10.1061/(ASCE)MT.1943-5533.0002884
[27] Breysse D. Nondestructive Evaluation of Concrete Strength: An Historical Review and a New Perspective by Combining NDT Methods. Construction and Building Materials 2012; 33, 139–163. 10.1016/j.conbuildmat.2011.12.103
[28] Qasrawi H. Effect of the position of core on the strength of concrete of columns in existing structures. Journal of Building Engineering 2019; 25: 100812. 10.1016/j.jobe.2019.100812
[29] Frappa G, Miceli M, Pauletta M. Destructive and non-destructive tests on columns and cube specimens made with the same concrete mix. Construction and Building Materials 2022; 349: 128807. 10.1016/j.conbuildmat.2022.128807
[30] Zhu W, Gibbs J C, Bartos P J M. Uniformity of in-situ properties of self-compacting concrete in full-scale structural elements. Cement and Concret Composite 2001; 23: 57-64. 10.1016/S0958-9465(00)00053-6
[31] Kim J, Kim C, Yi S, Lee Y. Effect of carbonation on the rebound number and compressive strength of concrete. Cement & Concrete Composites 2009; 31: 139–144. 10.1016/j.cemconcomp.2008.10.001.