تاثیر شدت‌های مختلف میدان مغناطیسی بر میزان خوردگی آرماتور در بتن حاوی میکروسیلیس در محیط خورنده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سازه، دانشکده فنی، دانشگاه گیلان، رشت، ایران

2 استاد گروه مهندسی عمران، دانشکده فنی، دانشگاه گیلان، رشت، ایران

3 دکتری سازه، دانشکده فنی، دانشگاه گیلان، رشت، ایران

4 پسادکتری سازه، دانشکده فنی، دانشگاه گیلان، رشت، ایران

10.22124/jcr.2025.30949.1706

چکیده

با توجه به آن که اعمال مستقیم میدان مغناطیسی به بتن در حالت تازه موجب بهبود خواص مهندسی آن می‌شود، انتظار می‌رود پدیده مغناطیس بتواند بر دوام بتن در محیط‌های خورنده نیز تأثیرگذار باشد. از آنجا که مطالعات مؤثری در خصوص میزان خوردگی آرماتور در بتن تحت میدان مغناطیسی انجام نشده است، پژوهش حاضر به بررسی اثرات اعمال شدت‌های مختلف میدان مغناطیسی شامل 5/0، 8/0 و 1 تسلا به بتن حاوی ۵ و ۱۰ درصد میکروسیلیس بر خواص مکانیکی و دوام آن می‌پردازد. همچنین ریزساختار بتن تحت میدان مغناطیسی با استفاده از تصاویر میکروسکوپ الکترونی روبشی (SEM) ارزیابی گردید. نتایج مطالعه حاضر نشان داد که اعمال مستقیم میدان مغناطیسی با شدت 1 تسلا به بتن حاوی 10 درصد میکروسیلیس می‌تواند میزان خوردگی آرماتور مدفون در آن را تا 17 درصد کاهش دهد. همچنین عملکرد فشاری بتن تحت میدان مغناطیسی تا حدود 24 درصد بهبود می‌یابد. از طرفی میزان جذب آب نهایی و تخلخل بتن تحت میدان مغناطیسی به ترتیب تا 14 و 18 درصد کاهش یافت. تحلیل SEM نمونه‌های بتن نیز نشان داد که القای مغناطیسی بتن با اثرگذاری بر فرایند هیدراتاسیون مواد سیمانی بر میزان ژل کلسیم سیلیکات هیدراته می‌افزاید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of different magnetic field intensities on the corrosion of steel rebar embedded in concrete incorporating silica fume, exposed to corrosive environment

نویسندگان [English]

  • Fakhri Javahershenas 1
  • Malek Mohammad Ranjbar 2
  • Morteza Sohrabi Gilani 3
  • Mohammad Hajforoush 4
1 Ph.D. Student in Structural Eng., Faculty of Engineering, University of Guilan, Rasht, Iran
2 Prof. in Structural Eng., Faculty of Engineering, University of Guilan, Rasht, Iran
3 Ph.D., Faculty of Engineering, University of Guilan, Rasht, Iran
4 Postdoctoral in Structural Eng., Faculty of Engineering, University of Guilan, Rasht, Iran
چکیده [English]

Since direct application of a magnetic field to fresh concrete improves its engineering properties, magnetic treatment is also expected to enhance the durability of concrete in a corrosive environment. Given the limited research on steel rebar corrosion rates in magnetically treated concrete, this study investigates the effects of different magnetic field intensities (0.5, 0.8, and 1 T) on the mechanical properties and durability of concrete containing 5% and 10% silica fume. Furthermore, the microstructure of magnetically treated concrete was evaluated using Scanning Electron Microscopy (SEM) images. The results demonstrated that applying a 1 T magnetic field to concrete incorporating 10% silica fume reduced embedded steel rebar corrosion by up to 17%. In addition, compressive strength of concrete exposed to magnetic field of 1 T increased by about 24%. Additionally, final water absorption and porosity of the concrete decreased by up to 14% and 18%, respectively. The SEM analysis revealed that magnetic field exposure affects the hydration process of cement materials, increasing the amount of calcium silicate hydrate (C-S-H) gel.

کلیدواژه‌ها [English]

  • Magnetic field
  • Concrete
  • Silica fume
  • Rebar corrosion
  • SEM
[1] Momtazi, A. S., Tahmouresi, B., & Khoshkbijari, R. K. (2016). An investigation on mechanical properties and durability of concrete containing silica fume and fly ash. Civil Engineering Journal, 2(5), 189-196
[2] Ghasemzadeh Mousavinejad, S. H., & Shemshad Sara, Y. G. (2019). Experimental study effect of silica fume and hybrid fiber on mechanical properties lightweight concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43, 263-271.
[3] Pratap, B. (2024). Analysis of the Synergistic Effects of Micro Silica on the mechanical and Durability Properties of Geopolymer Concrete Incorporating Phosphogypsum. Journal of Building Engineering, 109831.
[4]  Raza, S. S., Amir, M. T., Azab, M., Ali, B., Abdallah, M., El Ouni, M. H., & Elhag, A. B. (2022). Effect of micro-silica on the physical, tensile, and load-deflection characteristics of micro fiber-reinforced high-performance concrete (HPC). Case Studies in Construction Materials, 17, e01380.
[5]  Sadrmomtazi, A., Tahmouresi, B., & Kohani Khoshkbijari, R. (2018). Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete. Magazine of Concrete Research, 70(10), 519-532.
[6] Tayeh, B. A., Akeed, M. H., Qaidi, S., & Bakar, B. A. (2022). Influence of microsilica and polypropylene fibers on the fresh and mechanical properties of ultra-high performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 17, e01367.
[7] Sadrmomtazi, A., Sobhani, J., Mirgozar, M. A., & Najimi, M. (2012). Properties of multi-strength grade EPS concrete containing silica fume and rice husk ash. Construction and Building Materials, 35, 211-219.
 [8]Çelik, A. İ., Özkılıç, Y. O., Bahrami, A., & Hakeem, I. Y. (2023). Mechanical performance of geopolymer concrete with micro silica fume and waste steel lathe scraps. Case Studies in Construction Materials, 19, e02548.
[9] Ahmad, S., Al-Amoudi, O. S. B., Khan, S. M., & Maslehuddin, M. (2022). Effect of silica fume inclusion on the strength, shrinkage and durability characteristics of natural pozzolan-based cement concrete. Case Studies in Construction Materials, 17, e01255
[10] Garg, R., Garg, R., & Singla, S. (2021). Experimental investigation of electrochemical corrosion and chloride penetration of concrete incorporating colloidal nanosilica and silica fume. Journal of Electrochemical Science and Technology, 12(4), 440-452.
[11] Ghorbani S., Gholizadeh, M., & de Brito, J. (2018). Effect of magnetized water on the mechanical and durability properties of concrete block pavers. Materials, 11(9) 1647.
[12] Esfahani, A. R., Reisi, M., & Mohr, B. (2018). Magnetized water effect on compressive strength and dosage of superplasticizers and water in self-compacting concrete. Journal of Materials in Civil Engineering, 30(3), 04018008.
[13] Abdel-Magid, T. I. M., Hamdan, R. M., Abdelgader, A. A. B., & Omer, M. E. A, (2017), ‘‘Effect of magnetized water on workability and compressive strength of concrete’’, Procedia engineering, 193, 494-500.
[14] Ghorbani, S., Ghorbani, S., Tao, Z., De Brito, J., & Tavakkolizadeh, M. (2019). Effect of magnetized water on foam stability and compressive strength of foam concrete. Construction and Building materials, 197, 280-290.
[15] Ghorbani, S., Sharifi, S., De Brito, J., Ghorbani, S., Jalayer, M. A., & Tavakkolizadeh, M. (2019). Using statistical analysis and laboratory testing to evaluate the effect of magnetized water on the stability of foaming agents and foam concrete. Construction and Building Materials, 207, 28-40.
[16] Wei, H., Wang, Y., & Luo, J, (2017), Influence of magnetic water on early-age shrinkage cracking of concrete, Construction and Building Materials, 147, 91-100.
[17] Gholhaki, M., Hajforoush, M., & Kazemi, M. (2018). An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Construction and Building Materials, 158, 173-180.
[18] Hajforoush, M., Madandoust, R., & Kazemi, M. (2019). Effects of simultaneous utilization of natural zeolite and magnetic water on engineering properties of self-compacting concrete. Asian Journal of Civil Engineering, 20, 289-300.
[19] Su, N., Wu, Y. H., & Mar, C. Y. (2000). Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cement and concrete research, 30(4), 599-605.
[20] Su, N., & Wu, C. F. (2003). Effect of magnetic field treated water on mortar and concrete containing fly ash. Cement and concrete composites, 25(7), 681-688.
[21] Hajforoush, M., Kheyroddin, A., Rezaifar, O., & Kazemi, M. (2024). Magnetic field effect on bond performance between reinforcement and concrete containing steel fibers. Journal of Building Engineering, 111215.
[22] Amini, M. M., Ghanepour, M., & Rezaifar, O. (2024). Experimental analysis of the impact of alternating magnetic fields on the compressive strength of concrete with various silica sand and microsilica compositions. Case Studies in Construction Materials, 21, e03487.
[23] Rezaifar, O., Ghanepour, M., &Amini, M. M. (2024). A novel magnetic approach to improve compressive strength and magnetization of concrete containing nano silica and steel fibers. Journal of Building Engineering, 91, 109342.
[24] Javahershenas, F., Gilani, M. S., & Hajforoush, M. (2021). Effect of magnetic field exposure time on mechanical and microstructure properties of steel fiber-reinforced concrete (SFRC). Journal of Building Engineering, 35, 101975.
[25] Hajforoush, M., Kheyroddin, A., Rezaifar, O., & Kioumarsi, M. (2021). The effects of uniform magnetic field on the mechanical and microstructural properties of concrete incorporating steel fibers. Scientia Iranica, 28(5), 2557-2567.
[26] Ahmed, S. M., & Manar, D. F. (2021). Effect of static magnetic field treatment on fresh concrete and water reduction potential. Case Studies in Construction Materials, 14, e00535.
[27] Hajforoush, M., Kheyroddin, A., & Rezaifar, O. (2020). Investigation of engineering properties of steel fiber reinforced concrete exposed to homogeneous magnetic field. Construction and Building Materials, 252, 119064.
[28] Tarbozagh, A. S., Rezaifar, O., & Gholhaki, M. (2020). Electromagnetism in taking concrete behavior on demand. In Structures, Elsevier, 27, 1057-1065.
[29] Tarbozagh, A. S., Rezaifar, O., Gholhaki, M., & Abavisani, I. (2020). Magnetic enhancement of carbon nanotube concrete compressive behavior. Construction and Building Materials, 262, 120772.
[30] Ferrández, D., Saiz, P., Morón, C., Dorado, M. G., & Morón, A. (2019). Inductive method for the orientation of steel fibers in recycled mortars. Construction and building materials, 222, 243-253.
[31] Abavisani, I., Rezaifar, O., & Kheyroddin, A. (2018). Alternating magnetic field effect on fine-aggregate steel chip-reinforced concrete properties. J. Mater. Civ. Eng, 30(6), 04018087.
[32] Xue, W., Chen, J., Xie, F., & Feng, B. (2018). Orientation of steel fibers in magnetically driven concrete and mortar. Materials, 11(1), 170.
 [33] Abavisani, I., Rezaifar, O., & Kheyroddin, A. (2017). Alternating magnetic field effect on fine-aggregate concrete compressive strength. Construction and Building Materials, 134, 83-90.
[34] Abavisani, I., Rezaifar, O., & Kheyroddin, A. (2017). Magneto-electric control of scaled-down reinforced concrete beams. ACI Structural Journal, 114(1), 233-244.
[35] Rezaifar, O., Abavisani, I., & Kheyroddin, A. (2017). Magneto-electric active control of scaled-down reinforced concrete columns. ACI Struct J, 114(5), 1351-1362.
[36] Chen, J., Wang, J., & Jin, W. L. (2016). Study of magnetically driven concrete. Construction and Building Materials, 121, 53-59.
[37] Soto-Bernal, J. J., Gonzalez-Mota, R., Rosales-Candelas, I., & Ortiz-Lozano, J. A. (2015). Effects of static magnetic fields on the physical, mechanical, and microstructural properties of cement pastes. Advances in Materials Science and Engineering, (1), 934195.
[38] Zieliński, M. (2015). Influence of constant magnetic field on the properties of waste phosphogypsum and fly ash composites. Construction and Building Materials, 89, 13-24.
[39] ASTM C150 / C150M-19a. (2019). Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA.
 [40]ASTM C33 / C33M-18. (2018). Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA.
[41] ASTM D1129-13. (2013). Standard Terminology Relating to Water, ASTM International, West Conshohocken, PA.
[42] ASTM C494. (2004). Standard Specification for Chemical Admixtures for Concrete, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, USA
[43] ASTM C192. (2018). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken. PA, USA
[44] ASTM C39 / C39M-18., (2018), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocke.
[45] Yalciner, H., Eren, O., & Sensoy, S. (2012). An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level. Cement and Concrete Research, 42(5), 643-655.
[46] ASTM C642-21: ASTM International (2021). Standard test method for density absorption and voids in hardened concrete. ASTM International
[47] FIB. The International Federation for Structural Concrete, (2000). FIB Bulletin No. 10: Bond of reinforcement in concrete. Lausanne, Switzerland, 434.