افزایش عملکرد بتن با نانوذرات اکسید گرافن سنتز شده و سیلیکا

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیئت علمی دانشگاه پدافند هوایی خاتم الانبیاء (ص) ایران

10.22124/jcr.2025.27381.1660

چکیده

تأثیر تخلخل بتن بر جذب آب و پایداری محصولات سیمانی دارای اهمیت بالایی است. نفوذپذیری بتن اجازه ورود مولکول های واکنش پذیر را می دهد که می تواند باعث از دست دادن پایداری شیمیایی بتن شود. بتن با نفوذپذیری کم، مقاومت در برابر نفوذ آب، یون های سولفات، یون های کلرید وآلاینده دیگر را افزایش می دهد. این خاصیت مربوط به ساختار منافذ است. از جمله ترک های کوچک در فضاهای تماس بین سنگدانه و ملات سیمان. به اصطلاح ساختار منفذی شامل منافذ مویرگی است که حجم و اندازه های مختلفی دارند. این ساختار حاصل واکنش هیدراتاسیون سیمان است و از مواد جامد و منافذ تشکیل شده است. شبکه متخلخل خمیر سیمان ماتریس لازم برای نفوذ مایع به داخل بتن را تشکیل می دهد. توسعه این شبکه تحت تاثیر خواص بتن، شرایط آب بندی اولیه، مدت زمان آن، سن آزمایش و شرایط آب و هوا است. دما، زمان پردازش و رطوبت نیز از عوامل مهم موثر بر ساختار منافذ هستند. در این پژوهش از اکسید گرافن و نانوذرات سیلیس برای مقاوم ساختن بتن نانوکامپوزیت در برابر نفوذ استفاده شد. نتایج نشان دادند که با افزودن 05/0 درصد نانو ذرات اکسید گرافن و 10 درصد نانو ذرات سیلیکا، مقاومت فشاری و کششی بتن به ترتیب 6/28 و 35 درصد افزایش یافت. همچنین، در آزمایش‌های جذب آب، نمونه تولیدی تا 46 درصد کمتر آب جذب کرد و مقاومت الکتریکی آن 79 درصد بیشتر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Increasing concrete performance with synthesized graphene oxide nanoparticles and silica

نویسنده [English]

  • Seyed Ali Hosseini Moradi
Faculty of Basic Sciences, Department of Physics, faculty member of Khatam al-Anbia Air Defense University (PBUH) of Iran
چکیده [English]

The effect of concrete porosity on water absorption and stability of cement products is very important. The permeability of concrete allows the entry of reactive molecules that can cause the concrete to lose its chemical stability. Concrete with low permeability increases the resistance to the penetration of water, sulfate ions, chloride ions and other pollutants. This property is related to the pore structure. including small cracks in the contact spaces between aggregate and cement mortar. The so-called pore structure includes capillary pores that have different volumes and sizes. This structure is the result of the cement hydration reaction and consists of solid materials and pores. The porous network of cement paste forms the matrix necessary for liquid penetration into the concrete. The development of this network is influenced by concrete properties, initial sealing conditions, its duration, test age and weather conditions. Temperature, processing time and humidity are also important factors affecting the pore structure. In this research, graphene oxide and silica nanoparticles were used to make nanocomposite concrete resistant to penetration. The results showed that by adding 0.05% of graphene oxide nanoparticles and 10% of silica nanoparticles, the compressive and tensile strength of concrete increased by 28.6% and 35%, respectively. Also, in water absorption tests, the manufactured sample absorbed 46% less water and its electrical resistance was 79% higher.

کلیدواژه‌ها [English]

  • concrete
  • graphene oxide
  • silica
  • mechanical resistance
  • water absorption
  • electrical resistance
  • nano composite concrete
[1] T. Wilberforce, A. Baroutaji, B. Soudan, A.H. Al-Alami, A.G. Olabi, Outlook of carbon capture technology and challenges, Sci. Total Environ. 657 (2019) 56–72, https://doi.org/10.1016/j.scitotenv.2018.11.424.
[2] M. Mastali, Z. Abdollahnejad, F. Pacheco-Torgal, Carbon dioxide sequestration on fly ash/waste glassalkali-based mortars with recycled aggregates: compressive strength, hydration products, carbon footprint, and cost analysis, in: F. PachecoTorgal, C. Shi, A. Palomo Sanchez (Eds.), Carbon Dioxide Sequestration Cem. Constr. Mater. first ed., Woodhead Publishing, 2018, pp. 299–348, , https://doi. org/10.1016/B978-0-08-102444-7.00013-7.
[3] S. Drissi, T.-C. Ling, K.H. Mo, A. Eddhahak, A review of microencapsulated and composite phase change materials: alteration of strength and thermal properties of cement-based materials, Renew. Sustain. Energy Rev. 110 (2019) 467–484, https://doi.org/10.1016/j.rser.2019.04.072.
[4] WBCSD, Getting the Numbers Right Project: Reporting CO2, World Business Council for Sustainable Development, 2016, https://www.wbcsdcement.org/GNR2016/ , Accessed date: 19 June 2019.
[5] Y. Meng, T.-C. Ling, K.H. Mo, W. Tian, Enhancement of high temperature performance of cement blocks via CO2 curing, Sci. Total Environ. 671 (2019) 827–837, https://doi.org/10.1016/j.scitotenv.2019.03.411.
[6] V.V.P. Kumar, D.R. Prasad, Influence of supplementary cementitious materials on strength and durability characteristics of concrete, Adv. Concr. Constr. 7 (2019) 75–85, https://doi.org/10.12989/ACC.2019.7.2.075.
[7] S.K. Kaliyavaradhan, T.-C. Ling, Potential of CO2 sequestration through construction and demolition (C&D) waste—an overview, J. CO2 Util. 20 (2017) 234–242, https://doi.org/10.1016/j.jcou.2017.05.014.
[8] M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production—present and future, Cement Concr. Res. 41 (2011) 642–650, https://doi. org/10.1016/j.cemconres.2011.03.019.
[9] T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen, Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar, J. Clean. Prod. 187 (2018) 171–179, https://doi.org/10.1016/J. JCLEPRO.2018.03.202.
[10] D.K. Ashish, S.K. Verma, Determination of optimum mixture design method for self compacting concrete: validation of method with experimental results, Constr. Build. Mater. 217 (2019) 664–678, https://doi.org/10.1016/j.conbuildmat.2019.05.034.
[11] D.K. Ashish, Concrete made with waste marble powder and supplementary cementitious material for sustainable development, J. Clean. Prod. 211 (2019) 716–729, https://doi.org/10.1016/j.jclepro.2018.11.245.
[12] D.K. Ashish, S.K. Verma, Cementing Efficiency of Flash and Rotary-Calcined Metakaolin in Concrete, J. Mater. Civ. Eng. (2019), https://doi.org/10.1061/ (ASCE)MT.1943-5533.0002953 In press.
[13] L.M. Federico, Waste Glass-A Supplementary Cementitious Material, McMaster University, Hamilton, Ontario, Canada, 2013https://macsphere.mcmaster.ca/ bitstream/11375/13455/1/fulltext.pdf.
[14] M.C.G. Juenger, R. Siddique, Recent advances in understanding the role of supplementary cementitious materials in concrete, Cement Concr. Res. 78 (2015) 71–80, https://doi.org/10.1016/j.cemconres.2015.03.018.
[15] R. Snellings, Assessing, understanding and unlocking supplementary cementitious materials, RILEM Tech. Lett. 1 (2016), https://doi.org/10.21809/rilemtechlett. 2016.12 55–55.
[16] H. Toutanji, N. Delatte, S. Aggoun, R. Duval, A. Danson, Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete, Cement Concr. Res. 34 (2004) 311–319, https://doi.org/10.1016/J. CEMCONRES.2003.08.017.
[17] R. Siddique, Utilization of silica fume in concrete: review of hardened properties, Resour. Conserv. Recycl. 55 (2011) 923–932, https://doi.org/10.1016/J. RESCONREC.2011.06.012.
[18] M. Djezzar, K. Ezziane, A. Kadri, E.-H. Kadri, Modeling of ultimate value and kinetic of compressive strength and hydration heat of concrete made with different replacement rates of silica fume and w/b ratios, Adv. Concr. Constr. 6 (2018) 297–309, https://doi.org/10.12989/ACC.2018.6.3.297.
[19] M. Sarıdemir, Effect of silica fume and ground pumice on compressive strength and modulus of elasticity of high strength concrete, Constr. Build. Mater. 49 (2013) 484–489, https://doi.org/10.1016/J.CONBUILDMAT.2013.08.091.
[20] Zahra Abdollahnejad, Mohammad Kheradmand, F. Pacheco-Torgal, Short-term compressive strength of fly ash and waste glass alkali-activated cement-based binder mortars with two biopolymers, J. Mater. Civ. Eng. 29 (2017) 4017045, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001920.
[21] Z. Abdollahnejad, A. Dalvand, M. Mastali, T. Luukkonen, M. Illikainen, Effects of waste ground glass and lime on the crystallinity and strength of geopolymers, Mag. Concr. Res. (2018) 1–38, https://doi.org/10.1680/jmacr.18.00300.
[22] Y. Jani, W. Hogland, Waste glass in the production of cement and concrete – a review, J. Environ. Chem. Eng. 2 (2014) 1767–1775, https://doi.org/10.1016/j. jece.2014.03.016.
[23] K.A. Zaidi, S. Ram, M.K. Gautam, Utilisation of glass powder in high strength copper slag concrete, Adv. Concr. Constr. 5 (2017) 65–74, https://doi.org/10.12989/ACC. 2017.5.1.065.
[24] G. Chen, H. Lee, K.L. Young, P.L. Yue, A. Wong, T. Tao, K.K. Choi, Glass recycling in cement production—an innovative approach, Waste Manag. 22 (2002) 747–753, https://doi.org/10.1016/S0956-053X(02)00047-8.
[25] C. Shi, K. Zheng, A review on the use of waste glasses in the production of cement and concrete, Resour. Conserv. Recycl. 52 (2007) 234–247, https://doi.org/10. 1016/j.resconrec.2007.01.013.
[26] R.C. Lewis, N. De Belie, M. Soutsos, E. Gruyaert (Eds.), Silica Fume BT – Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-Of-The-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4, Springer International Publishing, Cham, 2018, pp. 99–121, , https://doi.org/10.1007/978-3-319-70606-1_3.
[27] K.C. Williams, P. Partheeban, An experimental and numerical approach in strength prediction of reclaimed rubber concrete, Adv. Concr. Constr. 6 (2018) 87–102, https://doi.org/10.12989/ACC.2018.6.1.087.
[28] A. Imam, V. Kumar, V. Srivastava, Review study towards effect of Silica Fume on the fresh and hardened properties of concrete, Adv. Concr. Constr. 6 (2018) 145–157, https://doi.org/10.12989/ACC.2018.6.2.145.
[29] Y. Yue, J.J. Wang, Y. Bai, Tracing the status of silica fume in cementitious materials with Raman microscope, Constr. Build. Mater. 159 (2018) 610–616, https://doi.org/10.1016/J.CONBUILDMAT.2017.11.015.
[30] M. Mazloom, A. Allahabadi, M. Karamloo, Effect of silica fume and polyepoxidebased polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC, Adv. Concr. Constr. 5 (2017) 587–911, https://doi.org/10.12989/ ACC.2017.5.6.587.
[31] S. Ahmad, A. Umar, A. Masood, M. Nayeem, Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume, Adv. Concr. Constr. 7 (2019) 31–37, https://doi.org/10.12989/ACC.2019.7.1.031.
[32] M. Mastali, A. Dalvand, The impact resistance and mechanical properties of fiber reinforced self-compacting concrete (SCC) containing nano-SiO2 and silica fume, Eur. J. Environ. Civ. Eng. 22 (2018) 1–27, https://doi.org/10.1080/19648189. 2016.1177604.
[33] B. Viswanath, S. Kim, P. de Voogt (Ed.), Influence of Nanotoxicity on Human Health and Environment: the Alternative Strategies BT - Reviews of Environmental Contamination and Toxicology, Springer International Publishing, Cham, 2017, pp. 61–104, , https://doi.org/10.1007/398_2016_12.
[34] P.H.M. Hoet, I. Brüske-Hohlfeld, O. V Salata, Nanoparticles - known and unknown health risks, J. Nanobiotechnol. 2 (2004) 12, https://doi.org/10.1186/1477-3155- 2-12.
[35] M.I. Khan, R. Siddique, Utilization of silica fume in concrete: review of durability properties, Resour. Conserv. Recycl. 57 (2011) 30–35, https://doi.org/10.1016/J.RESCONREC.2011.09.016.
[36] R. Siddique, N. Chahal, Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar, Resour. Conserv. Recycl. 55 (2011) 739–744, https://doi.org/10.1016/J.RESCONREC.2011.03.004.
[37] S. Yaseri, G. Hajiaghaei, F. Mohammadi, M. Mahdikhani, R. Farokhzad, The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste, Constr. Build. Mater. 157 (2017) 534–545, https://doi.org/10.1016/J.CONBUILDMAT.2017.09.102.
[38] P.-C. Aïtcin, 4 - supplementary cementitious materials and blended cements, in: P.C. Aïtcin, R.J. Flatt (Eds.), Sci. Technol. Concr. Admixtures, Woodhead Publishing, 2016, pp. 53–73, , https://doi.org/10.1016/B978-0-08-100693-1.00004-7.
[39] FHWA, User Guidelines for Waste and Byproduct Materials in Pavement Construction, (2016) Washington, DC, USA https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/intro.cfm , Accessed date: 25 April 2019.
[40] R.V. Silva, J. de Brito, C.Q. Lye, R.K. Dhir, The role of glass waste in the production of ceramic-based products and other applications: a review, J. Clean. Prod. 167 (2017) 346–364, https://doi.org/10.1016/J.JCLEPRO.2017.08.185.
[41] P. Turgut, E.S. Yahlizade, Research into concrete blocks with waste glass, Int. J. Civ. Environ. Eng. 3 (2009) 186–192 https://waset.org/publications/6041/researchinto-concrete-blocks-with-waste-glass , Accessed date: 28 April 2019.
[42] A. Mohajerani, J. Vajna, T.H.H. Cheung, H. Kurmus, A. Arulrajah, S. Horpibulsuk, Practical recycling applications of crushed waste glass in construction materials: a review, Constr. Build. Mater. 156 (2017) 443–467, https://doi.org/10.1016/J. CONBUILDMAT.2017.09.005.
[43] M. Belouadah, Z.E.A. Rahmouni, N. Tebbal, Effects of glass powder on the characteristics of concrete subjected to high temperatures, Adv. Concr. Constr. 6 (2018) 311–322, https://doi.org/10.12989/ACC.2018.6.3.311.
[44] S. Lv, T. Liu, T. Ma, Effect of GO nanosheets on mechanical properties of cement composites, Cement Concr. Compos. 98 (2019) 33-42, https://doi.org/10.1016/j.cemconcomp.2019.02.003.
[45] H. Du, S.D. Pang, Enhancement of barrier properties of cement mortar with graphene nanoplatelets, Constr. Build. Mater. 240 (2020) 117931, https://doi.org/10.1016/j.conbuildmat.2019.117931.
[46] K. Novoselov, A.K. Geim, I. Abrikosov, Graphene-reinforced self-compacting concrete: Mechanical and durability properties, Mater. Des. 199 (2021) 109406, https://doi.org/10.1016/j.matdes.2020.109406.
[47] L. Zhang, W. Chen, X. Li, Nanocomposite cement materials with graphene derivatives: A comprehensive review, Compos. Part B-Eng. 216 (2022) 108862, https://doi.org/10.1016/j.compositesb.2021.108862.
[48] Y. Wang, R. Huang, J. Zhao, Lightweight structural concrete with nano-additives: Performance evaluation, J. Mater. Civ. Eng. 32(4) (2020) 04020035, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003092.