بررسی جمع‌شدگی طولانی مدت بتن سبک خودتراکم حاوی اسکوریا و لیکا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان

2 دانشیار دانشکده مهندسی، دانشگاه بوعلی سینا

10.22124/jcr.2025.28899.1679

چکیده

یکی از ویژگی‌های مهم بتن سبک خودتراکم که بر دوام آن موثر است، جمع‌شدگی است. در تحقیق حاضر، بتن‌های سبک خودتراکم با سبکدانه‌های لیکا و اسکوریا در دو نسبت آب به سیمان 35/0 و 4/0 و دو درصد درشت‌دانه به کل سنگدانه 35% و 40% ساخته شده‌اند. کارایی، مقاومت فشاری و مدول الاستیسیته طرح‌ها ارزیابی شده‌اند. همچنین، جمع‌شدگی یک ساله طرح‌ها نیز مورد بررسی قرار گرفته است. نتایج حاکی از آن است که ساخت بتن‌های سبک خودتراکم با سبکدانه‌های لیکا و اسکوریا با کارایی مناسب، مقاومت فشاری و مدول الاستیسیته بیشتر از 30 مگاپاسکال و 17 گیگاپاسکال امکان‌پذیر است. جمع‌شدگی 365 روزه بتن‌های سبک خودتراکم از بتن‌های خودتراکم حدودا 38 درصدکمتر بوده است. کاهش نسبت آب به سیمان و افزایش درصد درشت‌دانه به ترتیب باعث کاهش 50 و 36 درصدی جمع‌شدگی شده است. نتایج نشان داده است که بیش از 80 درصد میزان جمع شدگی تا سن 250 روز رخ داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An investigation of the long-term shrinkage of self-compacted lightweight concretes with Scoria and Leca

نویسندگان [English]

  • nikta loghmani 1
  • M. Nili 2
1 Civil engineering faculty, Bu-Ali Sina university, Hamedan
2 Associate professor, Civil Eng., Dept., Bu-Ali Sina University, Hamedan, I.R.Iran
چکیده [English]

One of the important features of self-compacted lightweight concrete is shrinkage, which affects durability and service life of the structures. In the present study, self-compacted lightweight concretes containing Scoria and Leca were produced with two water-cement ratios (0.35, 0.4) and two coarse percentages (35%, 40%). Workability, compressive strength and modulus of elasticity of the specimens were evaluated. Moreover, the long term shrinkage strain was monitored during one year. The results indicated that it is possible to produce self-compacted lightweight containing Scoria and Leca with proper workability, compressive strength and modulus of elasticity of more than 30 MPa and 17 GPa, respectively. Also, the shrinkage value of self-compacted lightweight concretes was 38% lower than those for self-compacted ones. Reducing the water to cement ratio and increasing coarse percentage resulted into 50% and 36% decreases in the shrinkage, in turn. Monitoring of the results revealed that 80% of the total shrinkage strain occurred until 250 days.

کلیدواژه‌ها [English]

  • self-compacted lightweight concrete
  • long-term shrinkage
  • Leca
  • Scoria
 [1] Hassoun, M. N., & Al-Manaseer, A. Structural concrete: theory and design. John wiley & sons. (2020).
[2] Tsintskaladze, Giorgi & Kordzakhia, Teimuraz & Skhvitaridze, Rajden & Sharashenidze, Tinatin & Zautashvili, Marine & Beridze, Giorgi.. Physical and Chemical Characteristics of Pumice from Some Regions of Georgia and the Prospects for its Use in Lightweight Concrete with Environmental Advantages. 10.1201/9781003397960-16. (2024).
[3] Sousa, J.T.F.d.; Anjos, M.A.S.d.; Neto, J.A.d.S.; Farias, E.C.d.; Branco, F.G.; Maia Pederneiras, C. Self-Compacting Concrete with Artificial Lightweight Aggregates from Sugarcane Ash and Calcined Scheelite Mining Waste. Appl. Sci.  15, 452. (2025).
[4] Maghfouri, M., et al. "Quality control of lightweight aggregate concrete based on initial and final water absorption tests." IOP Conference Series: Materials Science and Engineering. Vol. 210. No. 1. IOP Publishing. )2017(.
[5] Maghfouri, Mehdi, et al. "Appropriate drying shrinkage prediction models for lightweight concrete containing coarse agro-waste aggregate." Journal of Building Engineering 29 (2020): 101148.  
[6]   Vahabi, M. Y., Tahmouresi, B., Mosavi, H., & Fakhretaha Aval, S. Effect of pre‐coating lightweight aggregates on the self‐compacting concrete. Structural Concrete, 23(4), 2120-2131. (2022).
 [7]         Bentz, D. P., & Weiss, W. J. Internal curing: a 2010 state-of-the-art review (pp. 1-82). Gaithersburg: US Department of Commerce, National Institute of Standards and Technology. (2011).
 [8]        Radlińska, A., Kaszyńska, M., Zieliński, A., & Ye, H. Early-age cracking of self-consolidating concrete with lightweight and normal aggregates. Journal of Materials in Civil Engineering, 30(10), 04018242. (2018).
 [9]       Wendling, A., Sadhasivam, K., & Floyd, R. W. Creep and shrinkage of lightweight self-consolidating concrete for prestressed members. Construction and Building Materials, 167, 205-215. (2018).
[10] Bymaster, J. C., Dang, C. N., Floyd, R. W., & Hale, W. M. Prestress losses in pretensioned concrete beams cast with lightweight self-consolidating concrete. In Structures (Vol. 2, pp. 50-57). (2015, June).
[11] Chen, H. J., Wu, K. C., Tang, C. W., & Huang, C. H. Engineering properties of self-consolidating lightweight aggregate concrete and its application in prestressed concrete members. Sustainability, 10(1), 142. (2018).
[12] ASTM C150. Standard Specification for Portland Cement1. American Society for Testing and Materials. (2022).
[13]     ASTM C136. Standard test method for sieve analysis of fine and coarse aggregates, American Society for Testing and Materials. (2019).
[14] ASTM C127-24. Standard test method for Relative Density (Specific Gravity) and absorption of coarse aggregate, American Society for Testing and Material. (2024).
[15]   ASTM C128. Standard test method for relative density (specific gravity) and absorption of fine aggregate. American Society for Testing and Material. (2022).
[16]      EFNARC, Specification and Guidelines for Self-Compacting Concrete. http://www.efnarc.org (32 pp.). (2005).
[17] ASTM C1611. Standard test method for slump flow of self-consolidating concrete. American Society for Testing and Materials. (2021).
[18] ASTM C138. Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. American Society for Testing and Materials. (2024).
[19] BS-EN-12390-3. Testing hardened concrete: Compressive strength of test specimens. BSI. (2019).
[20] ASTM C642. Standard test method for density, absorption, and voids in hardened concrete. Annual Book of ASTM Standards. American Society for Testing and Materials. (2021).
[21] ASTM C469. Standard test method for static modulus of elasticity and Poisson ratio of concrete in compression. ASTM Standards, American Society for Testing and Materials. (2022).
[22] Dolatabad, Y. A., Kamgar, R., & Tazangi, M. A. J. Effects of perlite, leca, and scoria as lightweight aggregates on properties of fresh and hard self-Compacting concretes. Journal of Advanced Concrete Technology, 18(10), 633-647. (2020)
[23] Wan, Dominic & Aslani, Farhad & Ma, Guowei. Lightweight Self-Compacting Concrete Incorporating Perlite, Scoria, and Polystyrene Aggregates. Journal of Materials in Civil Engineering. 30. 10.1061/(ASCE)MT.1943-5533.0002350. (2018).
[24] Andiç-çakır, Ö., E. Yoğurtcu, Ş. Yazıcı, and K. Ramyar. Selfcompacting lightweight aggregate concrete: Design and experimental study. Mag. Concr. Res. 61 (7): 519–52. (2009).
[25] European Standard (EN), Concrete, specification, performance, production and conformity, EN 206-1.(2021).
[26] American Concrete Institute (ACI), Building code requirements for structural concrete and commentary, An ACI standard.ACI318-19 (2019).
 [27] Floyd, R. W., Hale, W. M., & Bymaster, J. C. Effect of aggregate and cementitious material on properties of lightweight self-consolidating concrete for prestressed members. Construction and Building Materials, 85, 91-99. (2015).
[28] Grabois, T. M., Cordeiro, G. C., & Toledo Filho, R. D. Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers. Construction and Building Materials, 104, 284-292. (2016).
[29] Adhikary, S. K., Ashish, D. K., Sharma, H., Patel, J., Rudžionis, Ž., Al-Ajamee, M., ... & Khatib, J. M. Lightweight self-compacting concrete: A review. Resources, Conservation & Recycling Advances, 15, 200107. (2022).
[30] Kurt, M., Aydin, A. C., Gül, M. S., Gül, R., & Kotan, T. The effect of fly ash to self-compactability of pumice aggregate lightweight concrete. Sadhana, 40, 1343-1359. (2015).
[31] Neville, A. Properties of concrete CTP-VVP. Malaysia. (2008).
[32] Cui, H. Z., Lo, T. Y., & Xing, F. Properties of self-compacting lightweight concrete. Materials Research Innovations, 14(5), 392-396. (2010).
[33] American Concrete Institute (ACI), Report on high- strength concrete, An ACI standard. (2010)
[34] British Standard (BS), Structural use of concrete. Code of practice for design and construction, BS 8110- 97. (1997).
[35] Nahhab, A. H., & Ketab, A. K. Influence of content and maximum size of light expanded clay aggregate on the fresh, strength, and durability properties of self-compacting lightweight concrete reinforced with micro steel fibers. Construction and Building Materials, 233, 117922. (2020).
[36] Vahabi, M. Y., Tahmouresi, B., Mosavi, H., & Fakhretaha Aval, S. (2022). Effect of pre‐coating lightweight aggregates on the self‐compacting concrete. Structural Concrete, 23(4), 2120-2131.
[37] J.A. Bogas, R. Nogueira, N.G. Almeida, Influence of mineral additions and different compositional parameters on the shrinkage of structural expanded clay lightweight concrete, Mater. Des. 56 1039–1048. (2014).
[38] Güneyisi, E., Gesoglu, M., Azez, O. A., & Öz, H. Ö. Physico-mechanical properties of self-compacting concrete containing treated cold-bonded fly ash lightweight aggregates and SiO2 nano-particles. Construction and Building Materials, 101, 1142-1153. (2015).