بررسی اثر روش های مختلف مکانیک شکست بر پارامترهای شکست بتن توانمند بدون الیاف و حاوی الیاف ترکیبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد

2 کارشناسی ارشد، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد

3 هیات علمی گروه مهندسی عمران دانشگاه فردوسی مشهد

10.22124/jcr.2025.28961.1680

چکیده

پیچیدگی روابط و ارایه روش‌های گوناگون از چالش‌های اصلی این علم مکانیک شکست بتن می‌باشد. این چالش‌ها منجر به محدودیت کاربرد عملی این علم در بررسی و تحلیل سازه‌های بتنی شدند. در نتیجه بررسی و مقایسه پارامترهای مختلف این روش‌ها بر رفتار شکست بتن‌های مختلف از اهمیت زیادی برخوردار است. در این پژوهش، شش روش پر کاربرد علم مکانیک شکست نظیر روش کار شکست، روش اثر اندازه، روش اثر مرزی، روش منحنی تنش– تغییر ‌مکان، روش پیشنهادی استاندارد ASTM E1290 و مدل شکست بُووِر جهت بررسی دو معیار اصلی مکانیک شکست شامل انرژی شکست و چقرمگی شکست در بتن توانمند (بدون الیاف و تقویت شده با الیاف ترکیبی) با یکدیگر مقایسه و بررسی شدند. نتایج نشان می‌دهند که پاسخ‌های انرژی و چقرمگی شکست در تمامی این روش‌ها با افزودن الیاف به بتن توانمند افزایش یافتند. در این میان، فاکتور چقرمگی شکست حاصل از روش ASTM E1290 کمترین مقدار افزایش به مقدار 6/8% را به ازای افزودن الیاف در بتن توانمند نشان داده است. هر دو روش کار شکست و منحنی تنش- تغییرمکان نتایج انرژی شکست مناسب‌تری را برای بتن توانمند الیاف‌دار نشان دادند. در مقایسه با سایر روش‌ها، دو روش اثر اندازه و اثر مرزی جهت تعیین انرژی شکست بتن توانمند بدون الیاف به علت دقت بالا، سادگی و عدم وابستگی پارامترها به ابعاد نمونه‌ها مناسب‌ترند. همچنین، نسبت پارامترهای چقرمگی شکست در سه روش اثر اندازه، اثر مرزی و پیشنهادی ASTM تقریباً برابر با 7/1 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Impacts of Various Fracture Mechanics Approaches on the Fracture Parameters of Plain and Hybrid Fiber Reinforced High-Performance Concrete

نویسندگان [English]

  • Alireza Hosseini Mehrab 1
  • Seyedmahdi Amirfakhrian 2
  • Mansour Ghalehnovi 3
1 Department of Civil Engineering, Ferdowsi University of Mashhad
2 Department of Civil Engineering, Ferdowsi University of Mashhad
3 Civil Engineering Department, Ferdowsi University of Mashhad, Mashhad, IRAN.
چکیده [English]

The complexity of relationships and the presentation of various methods are among the main challenges of fracture mechanics of concrete. These challenges have limited the practical application of this science in examining and analyzing concrete structures. As a result, examining and comparing the various parameters of these methods on the fracture behavior of different concretes is very important. In this research, six widely used methods of fracture mechanics, such as work-of-fracture method (WFM), size effect method (SEM), boundary effect method (BEM), stress-displacement curve method (SDCM), the proposed ASTM E1290 standard method, and the Bower fracture model (BFM), were compared and analyzed to examine two main criteria of fracture mechanics, including fracture energy and fracture toughness in high-performance concrete (without fibers and reinforced with hybrid fibers). The results show that the fracture energy and fracture toughness responses in all these methods increased with the addition of fibers to high-performance concrete. Among these, the fracture toughness factor obtained from the ASTM E1290 method showed the smallest increase, at 6.8%, with the addition of fibers to high-performance concrete. Both WFM and SDCM showed more suitable fracture energy results for hybrid fiber-reinforced high-performance concrete. Compared to other methods, SEM and BEM are more suitable for determining the fracture energy of high-performance concrete without fibers due to their high accuracy, simplicity, and lack of parameter dependency on sample dimensions. Additionally, the fracture toughness parameter ratios in the SEM, BEM, BFM, and ASTM are approximately equal to 1.7.

کلیدواژه‌ها [English]

  • Fracture mechanics
  • Fracture energy
  • High-performance concrete
  • Fracture toughness
  • Size-effect
[1] Bažant Z.P. and Planas J. Fracture and Size Effect in Concrete and Other Quasi-Brittle Materials. CRC Press, United States of America, 1998.
[2] Lee S.J., Hong Y., Eom A.H. and Won J. P. Effect of Steel Fibres on Fracture Parameters of Cementitious Composites. Composite Structures, 2018; 204 (15): 658-663.
[3] Mousavi S.M., Ranjbar M.M. and Madandoust R. Combined Effects of Steel Fibers and Water to Cementitious Materials Ratio on the Fracture Behavior and Brittleness of High Strength Concrete. Engineering Fracture Mechanics, 2019; 216: 106517.
[4] Pirooznia A. and Moradloo A.J. Investigation of Size Effect and Smeared Crack Models in Ordinary and Dam Concrete Fracture Tests. Engineering Fracture Mechanics, 2020; 226: 106863
]5 [اصفهانی، محمدرضا. مکانیک شکست بتن. چاپ دوم. تهران: انتشارات دانشگاه صنعتی امیرکبیر، 1396.
[6] Shah S.P., Swartz S.E. and Ouyang C. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock, and Other Quasi-Brittle Materials. John Wiley & Sons, United States of America, 1995
[7] Karamloo M., Mazloom M. and Payganeh G. Influences of Water to Cement Ratio on Brittleness and Fracture Parameters of Self-Compacting Lightweight Concrete. Engineering Fracture Mechanics, 2016.
[8] Hosseini Mehrab A. and Esfahani M.R. Experimental Study on Size Effect and Fracture Properties of Polypropylene Fiber Reinforced Lightweight Aggregate Concrete. Periodica Polytechnica Civil Engineering, 2022; 66 (4): 1278-1293. 
[9] Karamloo M., Mazloom M. and Payganeh G. Effects of Maximum Aggregate Size on Fracture Behaviors of Self-Compacting Lightweight Concrete. Construction and Building Materials, 2016; 123: 508-515.
[10] Sadrmomtazi A., Lotfi-Omran O. and Nikbin I.M. Influence of Cement Content and Maximum Aggregate Size on the Fracture Parameters of Magnetite Concrete Using WFM, SEM and BEM. Theoretical and Applied Fracture Mechanics, 2020.
[11] Guneyisi E., Gesoglu M., Ozturan T. and Ipek S. Fracture Behavior and Mechanical Properties of Concrete with Artificial Lightweight Aggregate and Steel Fiber. Construction and Building Materials, 2015; 84: 156-168.
[12] Hosseini Mehrab A., Amirfakhrian S. and Esfahani M.R. Fracture Characteristics of Three Various Concrete Composites Containing Polypropylene Fibers Through Five Fracture Mechanics Methods. Materials Testing, 2023; 65 (1): 10-32.
[13] Xie C., Cao M., Khan M., Yin H. and Guan J. Review on Different Testing Methods and Factors Affecting Fracture Properties of Fiber Reinforced Cementitious Composites. Construction and Building Materials, 2020.
[14] Ghasemi M., Ghasemi M.R. and Mousavi S.R. Studying the Fracture Parameters and Size Effect of Steel Fiber-Reinforced Self-Compacting Concrete. Construction and Building Materials, 2019; 201: 447-460.
[15] Kazemi M.T., Golsorkhtabar H., Beygi M.H.A. and Gholamitabar M. Fracture Properties of Steel Fiber Reinforced High Strength Concrete Using Work of Fracture and Size Effect Methods. Construction and Building Materials, 2017; 142: 482-489.
[16] Bencardino F., Rizzuti L., Spadea G. and Swamy R.N. Experimental Evaluation of Fiber Reinforced Concrete Fracture Properties. Composites, 2010; 41: 17-24.
[17] RILEM FMC-50. Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Tests on Notched Beams. Mater Struct 1985.
[18] Bazant Z.P. and Kazemi M.T. Determination of Fracture Energy, Process Zone Length and Brittleness Number from Size Effect, with Application to Rock and Concrete. International Journal of Fracture 1990; 44: 111–131.
[19] RILEM TC-89 FMT. Size-Effect Method for Determining Fracture Energy and Process Zone Size of Concrete. Materials and Structures, 1990.
[20] Hu X. and Duan K., Mechanism Behind the Size Effect Phenomenon. Journal of Engineering Mechanics, 2010; 136: 60-68.
[21] ASTM E1290. Standard test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement; 2008
[22] Anandan S., Islam S. and Abad Khan R. Effect of Steel Fibre Profile on the Fracture Characteristics of Steel Fibre Reinforced Concrete Beams, Journal of Engineering Research, 2019; 7 (2): 105-124.
[23] Shargh Cement Company; https://www.sharghcement.ir. 2024.
[24] Zhikava Chemical Industries; https:// www.zhikava.com. 2024.
[25] Beton Shimi Zarin Company; https:// www.betonbs.com. 2024.
[26] BS EN 12390. Testing Hardened Concrete. Method of Determination of Compressive Strength of Concrete Cubes. (BS, Part 3) British Standards Institution; 2009.
[27] ASTM C 496. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Standards for Testing and Materials; 2011.
[28] ASTM C469. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. American Society of Testing and Materials; 2004.
[29] Bažant Z.P. and Becq-Giraudon E. Statistical Prediction of Fracture Parameters of Concrete and Implications for Choice of Testing Standard. Cement and Concrete Research, 2002; 32: 529-556.
[30] Guinea G.V., Planas J. and Elices M. Measurement of the Fracture Energy Using Three-Point Bend Tests: Part 1 Influence of Experimental Procedures. Materials and Structures, 1992; 25: 212-218.
[31] Rahmani E., Sharbatdar M.K. and Beygi M.H.A. The Effect of Water-to-Cement Ratio on The Fracture Behaviors and Ductility of Roller Compacted Concrete Pavement (RCCP), Theoretical and Applied Fracture Mechanics, 2020; 109: 102753.
[32] Kazemi F., Shafighfard T. and Yoo D.Y. Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review, Archives of Computational Methods in Engineering, 2024; 31: 2049-2078.