تأثیر ناحیه انتقال بر خواص و ریزساختار بتن‌ بازیافتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 استاد، گروه عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 عضو هیات علمی گروه عمران دانشگاه صنعتی جندی شاپور دزفول

10.22124/jcr.2025.27918.1665

چکیده

در پژوهش حاضر، تأثیر ناحیه انتقال بر خواص مکانیکی، دوام و ریزساختار بتن‌های بازیافتی ساخته شده از سنگدانه‌های بتن بازیافتی و سرباره درشت فولاد ارزیابی گردید. سنگدانه‌های بتن بازیافتی و سرباره به‌ترتیب به‌میزان %25، %50 ، %100 و %25 و %50 جایگزین سنگدانه‌های درشت طبیعی شدند و همین‎طور میکروسیلیس به‌میزان %5 و %10 جایگزین بخشی از سیمان مصرفی در ساخت بتن با نسبت آب به مواد سیمانی 45/0 گردید. به‌منظور بررسی تأثیر ناحیه انتقال بر خواص مکانیکی، دوام و ریزساختار بتن‌ها، ۲۱ طرح اختلاط ساخته شدند و با روش تاگوچی ۱۰ طرح انتخاب و مجموعا 800 نمونه در محدودة سنی ۷ تا ۱۸۰ روزه بررسی گردیدند. نتایج نشان داد که با افزایش میزان میکروسیلیس، خواص مکانیکی بهبود یافته و به‌تبع آن کاهش در جذب آب غوطه‌وری، نفوذ آب تحت‌فشار و نفوذ تسریع‌شده یون کلراید و افزایش قابل‌توجه در مقاومت الکتریکی نمونه‌ها رخ داده ‌است. هم‌چنین در میزان فاز بلوری هیدروکسید کلسیم و تعداد منافذ بزرگ کاهش و در فاز سیلیکات کلسیم هیدراته ناحیه انتقال افزایش حاصل شد که این منجر به بهبود کیفیت ریزساختار گردید. با افزایش سن نمونه‌ها، فازهای سیلیکات کلسیم هیدراته و هیدروکسید کلسیم به ترتیب %22 افزایش و %41 کاهش و به‌تبع آن مقاومت فشاری و مقاومت ویژه الکتریکی به ترتیب %30 و %460 افزایش و نفوذ تسریع یون کلراید %72 کاهش پیدا کرد. بررسی محدودة 50 میکرومتری از مرز سنگدانه با طیف‌سنجی انرژی اشعه ایکس نشان داد که در فاصله 20 میکرومتری، بیشترین همبستگی بین نسبت‌های عناصر ناحیه انتقال با خواص بتن برقرار می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of transition zone on the properties and micro-structure of recycled concrete

نویسندگان [English]

  • Seyed Ghasem Mirahmadi 1
  • Seyed Fathollah Sajedi 2
  • Seyed Vahid Razavi Toosi 3
1 PhD candidate, Department of Civil Engineering, Ahvaz Branch, Islami Azad University, Ahvaz, Iran
2 Professor, Department of Civil Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 Jundi Shapor University of Technology
چکیده [English]

In the current study, the effect of the Interfacial transition zone on the mechanical properties, durability and microstructure of recycled concrete made from recycled concrete aggregates and coarse steel slag was evaluated.Recycled concrete aggregates replaced with natural coarse aggregates by 25%, 50%, 100%, and slag by 25% and 50%, respectively, and microsilica by 5% and 10% replaced with a part of cement used in concrete using the w/c as 0.45.In order to investigate the effect of ITZ on the mechanical properties, durability and microstructure of concrete, 21 mixing designs were made and 10 designs were selected using the Taguchi method and a total of 800 samples aged between 7 and 180 days were examined. Increasing microsilica improved mechanical properties, reduced water absorption and penetration, increased chloride resistance, and enhanced electrical resistance in samples. Also, the amount of crystalline phase of calcium hydroxide and the number of large pores decreased, and the hydrated calcium silicate phase of the transition region increased, which led to Enhanced microstructure quality. As the samples age increased, hydrated calcium silicate phase increased by 22% and calcium hydroxide phase decreased by 41%; as a result, the compressive strength and specific electrical resistance increased by 30% and 460%, respectively, and the chloride ion acceleration penetration decreased by 72%; examining the 50 µm limit from the aggregate boundary with X-ray energy spectroscopy showed that at a distance of 20 µm, the highest correlation between the ratios of elements in the transition zone with concrete properties is established.

کلیدواژه‌ها [English]

  • Interfacial Transition Zone
  • Properties of recycled concrete
  • Microstructure
  • Spectroscopy
  • X-ray
  • Atomic ratio of elements
  • Scanning Electron Micrograph (SEM)
[1] V. Corinaldesi, G. Moriconi, Behaviour of cementitious mortars containing different kinds of recycled aggregate, Construction and building materials, 23(1) (2009) 289-294.
[2] A. Rao, K.N. Jha, S. Misra, Use of aggregates from recycled construction and demolition waste in concrete, Resources, conservation and Recycling, 50(1) (2007) 71-81.
[3] N.D. Oikonomou, Recycled concrete aggregates, Cement and concrete composites, 27(2) (2005) 315-318.
[4] J. Wang, H. Yuan, X. Kang, W. Lu, Critical success factors for on-site sorting of construction waste: a China study, Resources, conservation and recycling, 54(11) (2010) 931-936.
[5] F. Krausmann, S. Gingrich, N. Eisenmenger, K.-H. Erb, H. Haberl, M. Fischer-Kowalski, Growth in global materials use, GDP and population during the 20th century, Ecological economics, 68(10) (2009) 2696-2705.
[6] M.U. Farooq, R. Hameed, M. Tahir, M.G. Sohail, S. Shahzad, Mechanical and durability performance of 100% recycled aggregate concrete pavers made by compression casting, Journal of Building Engineering, 73 (2023) 106729.
[7] L. Chunlin, Z. Kunpeng, C. Depeng, Possibility of concrete prepared with steel slag as fine and coarse aggregates: A preliminary study, Procedia Engineering, 24 (2011) 412-416.
[8] E. Anastasiou, I. Papayianni, Criteria for the use of steel slag aggregates in concrete, in:  Measuring, Monitoring and Modeling Concrete Properties: An International Symposium dedicated to Professor Surendra P. Shah, Northwestern University, USA, Springer, 2006, pp. 419-426.
[9] J.M. Manso, J.A. Polanco, M. Losañez, J.J. González, Durability of concrete made with EAF slag as aggregate, Cement and concrete composites, 28(6) (2006) 528-534.
[10] M. Maslehuddin, A.M. Sharif, M. Shameem, M. Ibrahim, M. Barry, Comparison of properties of steel slag and crushed limestone aggregate concretes, Construction and building materials, 17(2) (2003) 105-112.
[11] R.V. Silva, J. De Brito, R.K. Dhir, Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete, Journal of cleaner production, 112 (2016) 2171-2186.
[12] S.-c. Kou, C.-s. Poon, Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete, Construction and Building Materials, 77 (2015) 501-508.
[13] A. Gholampour, T. Ozbakkaloglu, Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates, Engineering Structures, 157 (2018) 224-234.
[14] D. Pedro, J. De Brito, L. Evangelista, Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume, Cement and Concrete Composites, 93 (2018) 63-74.
[15] D. Matias, J. de Brito, A. Rosa, D. Pedro, Durability of concrete with recycled coarse aggregates: influence of superplasticizers, Journal of materials in civil engineering, 26(7) (2014) 06014011.
[16] L. Jiang, The interfacial zone and bond strength between aggregates and cement pastes incorporating high volumes of fly ash, Cement and concrete composites, 21(4) (1999) 313-316.
[17] K.M. Nemati, P.J. Monteiro, K.L. Scrivener, Analysis of compressive stress-induced cracks in concrete, ACI Materials Journal, 95 (1998) 617-630.
[18] H. Wong, M. Zobel, N. Buenfeld, R. Zimmerman, Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying, Magazine of concrete research, 61(8) (2009) 571-589.
[19] S. Diamond, J. Huang, The ITZ in concrete–a different view based on image analysis and SEM observations, Cement and concrete composites, 23(2-3) (2001) 179-188.
[20] Y. Zaitsev, Crack propagation in a composite material, Fracture mechanics of concrete,  (1983) 251-299.
[21] D.P. Bentz, D.P. Bentz, A three-dimensional cement hydration and microstructure program. I. hydration rate, heat of hydration, and chemical shrinkage, National Institute of Standards and Technology, 1995.
[22] I.B. Topcu, Physical and mechanical properties of concretes produced with waste concrete, Cement and concrete research, 27(12) (1997) 1817-1823.
[23] C. Pellegrino, P. Cavagnis, F. Faleschini, K. Brunelli, Properties of concretes with black/oxidizing electric arc furnace slag aggregate, Cement and Concrete Composites, 37 (2013) 232-240.
[24] F. Faleschini, C. Pellegrino, Experimental behavior of reinforced concrete beams with electric arc furnace slag as recycled aggregate, ACI Mater. J, 110(2) (2013) 197-205.
[25] H. Beshr, A. Almusallam, M. Maslehuddin, Effect of coarse aggregate quality on the mechanical properties of high strength concrete, Construction and building materials, 17(2) (2003) 97-103.
[26] J.D. Gupta, W.A. Kneller, R. Tamirisa, E. Skrzypczak-Jankun, Characterization of base and subbase iron and steel slag aggregates causing deposition of calcareous tufa in drains, Transportation research record, (1434) (1994).
[27] A.M. Wagih, H.Z. El-Karmoty, M. Ebid, S.H. Okba, Recycled construction and demolition concrete waste as aggregate for structural concrete, HBRC journal, 9(3) (2013) 193-200.
[28] P. Agamuthu, Challenges in sustainable management of construction and demolition waste, in, SAGE Publications Sage UK: London, England, 2008, pp. 491-492.
[29] P.K. Mehta, Concrete. Structure, properties and materials,  (1986).
[30] J. Pacheco, J. De Brito, C. Chastre, L. Evangelista, Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates, Construction and Building Materials, 201 (2019) 110-120.
[31] H.K.A. Al-Bayati, P.K. Das, S.L. Tighe, H. Baaj, Evaluation of various treatment methods for enhancing the physical and morphological properties of coarse recycled concrete aggregate, Construction and Building Materials, 112 (2016) 284-298.
[32] M. Etxeberria, E. Vázquez, A. Marí, M. Barra, Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete, Cement and concrete research, 37(5) (2007) 735-742.
[33] K.K. Sagoe-Crentsil, T. Brown, A.H. Taylor, Performance of concrete made with commercially produced coarse recycled concrete aggregate, Cement and concrete research, 31(5) (2001) 707-712.
[34] K. Rahal, Mechanical properties of concrete with recycled coarse aggregate, Building and environment, 42(1) (2007) 407-415.
[35] Y. Xie, D.J. Corr, F. Jin, H. Zhou, S.P. Shah, Experimental study of the interfacial transition zone (ITZ) of model rock-filled concrete (RFC), Cement and Concrete Composites, 55 (2015) 223-231.
[36] W.A. Tasong, C.J. Lynsdale, J.C. Cripps, Aggregate-cement paste interface: Part I. Influence of aggregate geochemistry, Cement and concrete research, 29(7) (1999) 1019-1025.
[37] A. Neville, Aggregate bond and modulus of elasticity of concrete, Materials Journal, 94(1) (1997) 71-74.
[38] D. ASTM, C856-18a, Standard Practice for Petrographic Examination of Hardened Concrete.
[39] C.S. Poon, Z. Shui, L. Lam, Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates, Construction and building materials, 18(6) (2004) 461-468.
[40] K.L. Scrivener, P.L. Pratt, Characterization of interfacial microstructure, Interfacial transition zone in concrete, 2 (1996) 3-18.
[41] J. Ollivier, J. Maso, B. Bourdette, Interfacial transition zone in concrete, Advanced cement based materials, 2(1) (1995) 30-38.
[42] A. Jayasuriya, E.S. Shibata, T. Chen, M.P. Adams, Development and statistical database analysis of hardened concrete properties made with recycled concrete aggregates, Resources, Conservation and Recycling, 164 (2021) 105121.
[43] J. Maso, Interfacial transition zone in concrete, CRC Press, 1996.
[44] C. Chen, G. Wei, J.-G. Dai, S. Hong, B. Dong, J. Chen, Y. Wang, Micromechanical and Microstructural Characteristics of Interfacial Transition Zone in Calcium Rich Artificial Aggregate Concrete, Available at SSRN 4720866.
[45] ASTM, Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM C88-05, in, ASTM International West Conshohocken, PA, 2005.
[46] A. C143, Standard test method for slump of hydraulic-cement concrete, Book of ASTM Standards,  (2015).
[47] A. Standard, C138: Standard Test Method for Density (Unit Weight), Yield, and Air-Content (Gravimetric) of Concrete, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA,  (2013).
[48] M. Riley, A. Cotgrave, Construction technology 1: House construction, Bloomsbury Publishing, 2018.
[49] M. Walker, Guide to the construction of reinforced concrete in the Arabian Peninsula, (No Title),  (2002).
[50] B.S. Institution, BS 1881 122: 2011+ A1: 2020. Testing Concrete: Part 122. Method for Determination of Water Absorption, British Standards Institution, 2020.
[51] A. ASTM C642, Standard test method for density, absorption, and voids in hardened concrete, ASTM, ASTM International,  (2013).
[52] B. En, 12390-8," Depth of penetration of water under pressure, British Standards Institution,  (2000).
[53] A.S.f. Testing, M.C.C.-o. Concrete, C. Aggregates, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM International, 2012.
[54] V.M. Malhotra, N.J. Carino, Handbook on nondestructive testing of concrete, CRC press, 2003.
[55] A.C.I.C. 222, Protection of Metals in Concrete Against Corrosion (ACI 222R-01), in, ACI Farmington Hills, MI, 2001.
[56] C. ASTM, 1202: Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration, Annual book of ASTM standards, 4(2) (1997) 639-644.
[57] J. Tragardh, Microstructural features and related properties of self-compacting concrete, in:  Self-Compacting Concrete: Proceedings of the First International RILEM Symposium held in Stockholm, 1999, pp. 175-186.
[58] S. Erdem, A.R. Dawson, N.H. Thom, Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates, Cement and Concrete Research, 42(2) (2012) 447-458.
[59] C.E.-I.d. Béton, CEB-FIP model code 1990: Design code, Thomas Telford Publishing, 1993.
[60] J.-C. Souche, P. Devillers, M. Salgues, E.G. Diaz, Influence of recycled coarse aggregates on permeability of fresh concrete, Cement and Concrete Composites, 83 (2017) 394-404.
[61] M. Alexander, Two experimental techniques for studying the effects of the interfacial zone between cement paste and rock, Cement and Concrete Research, 23(3) (1993) 567-575.
[62] P. Vargas, O. Restrepo-Baena, J.I. Tobón, Microstructural analysis of interfacial transition zone (ITZ) and its impact on the compressive strength of lightweight concretes, Construction and Building Materials, 137 (2017) 381-389.
[63] A. Sadrmomtazi, B. Tahmouresi, R. Kohani Khoshkbijari, Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete, Magazine of Concrete Research, 70(10) (2018) 519-532.
[64] P. Mounanga, M.I.A. Khokhar, R. El Hachem, A. Loukili, Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler, Materials and structures, 44 (2011) 437-453.
[65] T. Akçaoğlu, M. Tokyay, T. Çelik, Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete, Cement and Concrete Research, 35(2) (2005) 358-363.
[66] M. Thomas, T. Ramlochan, Field cases of delayed ettringite formation, in:  International RILEM Workshop on Internal Sulfate Attack and Delayed Ettringite Formation, Rilem Publications SARL, 2004, pp. 85-97.
[67] S. Erdem, A.R. Dawson, N.H. Thom, Influence of the micro-and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates, Cement and Concrete Research, 42(2) (2012) 447-458.
[68] D. Zampini, H. Jennings, S. Shah, Characterization of the paste-aggregate interfacial transition zone surface roughness and its relationship to the fracture toughness of concrete, Journal of materials science, 30 (1995) 3149-3154.