[1]دفتر مقررات ملی ساختمان؛ مبحث نهم مقررات ملی ساختمان (طرح و اجرای ساختمان های بتن آرمه)، نشر توسعه ایران، تهران، ویراست چهارم، 1392
[2] Okafor, F. O. (2010). Performance of recycled asphalt pavement as coarse aggregate in concrete. Leonardo Electronic Journal of Practices and Technologies, 17(9), 47-58.
[3] دکتر غلامرضا سبز قبایی"بازیافت شیشه و اثرات زیست محیطی بازیافت"دومین کنگره ملی توسعه و ترویج مهندسی کشاورزی وعلوم خاک ایران،1388
[4] Erdem, S., & Blankson, M. A. (2014). Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate. Journal of hazardous materials, 264, 403-410.
[5] Hossiney, N., Tia, M., & Bergin, M. J. (2010). Concrete containing RAP for use in concrete pavement. International Journal of Pavement Research and Technology, 3(5), 251-258.
[6] Li, G., Zhao, Y., Pang, S. S., & Huang, W. (1998). Experimental study of cement-asphalt emulsion composite. Cement and Concrete Research, 28(5), 635-641.
[7] Huang, B., Shu, X., & Li, G. (2005). Laboratory investigation of portland cement concrete containing recycled asphalt pavements. Cement and Concrete Research, 35(10), 2008-2013.
[8] Solanki, P., & Dash, B. (2015). Mechanical properties of concrete containing recycled asphalt pavement and class C fly ash. In World of Coal Ash (WOCA) Conference in Nashville.
[9] European Asphalt Pavement Association rue du Commerce 77, 1040 Brussels, Belgium,
www.eapa.prg,info@eapa.org.June2014.
[10] Tabaković, A., Gibney, A., McNally, C., & Gilchrist, M. D. (2010). Influence of recycled asphalt pavement on fatigue performance of asphalt concrete base courses. Journal of Materials in Civil Engineering, 22(6), 643-650.
[11] Mills-Beale, J., & You, Z. (2010). The mechanical properties of asphalt mixtures with recycled concrete aggregates. Construction and Building Materials, 24(3), 230-235.
[12] Savas Apurva A. Fursule, Prof.V.S. Shingade, (2017), “ Experimental Study of Mechanical Properties of concrete Using Recycled Aggregate With Nano Silica,” International Research Journal of Engineering and technology, 4(8), pp 950-953.
[13] Bhandari, P. S., & Tajne, K. M. (2013). Use of waste glass in cement mortar. International journal of civil and structural engineering, 3(4), 704.
[14] Park, S. B., Lee, B. C., & Kim, J. H. (2004). Studies on mechanical properties of concrete containing waste glass aggregate. Cement and concrete research, 34(12), 2181-2189.
[15] Patil, H. S., Dwivedi, A. K., & Chatterjee, A. M. (2017). Optimize Properties of Concrete with Silica Fume. MAYFEB Journal of Materials Science, 2.
[16] Biswal, K. C., & Sadangi, S. C. (2011). Effect of superplasticizer and silica fume on properties of concrete.
[17] Gesoglu, M., Güneyisi, E., Asaad, D. S., & Muhyaddin, G. F. (2016). Properties of low binder ultra-high performance cementitious composites: Comparison of nanosilica and microsilica. Construction and Building Materials, 102, 706-713.
[18] A, Dunster, (2009), “ Silica Fume in Concrete,” HIS BRE Press, Garston, UK, 5(9), pp 2060-2071.
[19] Valipour, M., Pargar, F., Shekarchi, M., & Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879-888.
[20] Sabet, F. A., Libre, N. A., & Shekarchi, M. (2013). Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Construction and Building Materials, 44, 175-184.
[21] Gupta, T., Chaudhary, S., & Sharma, R. K. (2016). Mechanical and durability properties of waste tire fiber concrete with and without silica fume. Journal of Cleaner Production, 112, 702-711
[22] Norouzifar, M., Madani, H. (2018). THE PROPERTIES OF CONCRETE CONTAINING TERNARY CEMENT OF HIGH VOLUME TUFF AND SILICA FUME. Sharif Journal of Civil Engineering, 34.2(2.1), 87-98.
[23] Ghalehnovi, M., Khodabakhshian, A., Asadi Shamsabadi, E. (2018). The effect of waste marble powder and silica fume as a partial replacement of cement on concrete durability. Concrete Research, 11(2), 35-50.
[24] Soltani, A., Tarighat, A., & Byezidi, M. (2019). Pozzolanic Effects of Meta-Halloysite and Micro-Silica on Mechanical Strength and Durability of Concrete. Journal of Civil Engineering, 31(3).
[25] ASTM C150-11, ”Standard Specification for Portland Cement”, 2011.
[26] ASTM C1240-11 ,”Standard Specification for Use of Silica Fume for Use as a Mineral Admixture in Hydraulic-Cement Concrete, Mortar, and Grout”, 2011.
[27] ASTM C29/C29M/17, 2011, Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM International, West Conshohohocken, PA.
[28] استاندارد ملی 4977 ایران، دانه بندی سنگدانههای ریز ودرشت، موسسه استاندارد و تحقیقات صنعتی ایران، تهران، تجدید نظر اول، 1393
[29] استاندارد ملی 4982 ایران، تعیین چگالی و جذب آب سنگدانه درشت، موسسه استاندارد و تحقیقات صنعتی ایران، تهران، تجدید نظر دوم، 1396
[30] استاندارد ملی 14748 ایران، آب اختلاط بتن، موسسه استاندارد و تحقیقات صنعتی ایران، تهران، 1390
[31] استاندارد ملی 2930 ایران، الزامات افزودنیهای بتن، موسسه استاندارد و تحقیقات صنعتی ایران، تهران، 1392
[32] ACI Committee 211, (1991), Guide for selecting proportions for high-strength concrete with Portland cement and fly ash. ACI226.4R, ACI Materials Journal..
[33] استاندارد ملی 4983 ایران، سنگدانهها، مقدار کل رطوبت قابل تبخیر، موسسه استاندارد و تحقیقات صنعتی ایران، تهران، تجدید نظر اول، 1393
[34] استاندارد ملی 2-3203 ایران ، تعیین اسلامپ بتن تازه، موسسه استاندارد و تحقیقات صنعتی ایران، تهران، تجدید نظر دوم، 1386
[35] ASTM C39-11, ”Standard Specification for Compressive Strength of Cylindrical Concrete Specimens”, 2011.
[36] ASTM C496-11, ”Standard Specification for Splitting Tensile Strength of Cylindrical Concrete Specimens”, 2011.
[37] ACI 318 Committee 363, “State of the art report on high-strength concrete”, ACI363-R, Farmington Hills (Michigan), American Concrete Institute, 1992.
[38] CSN, E. (2014). 206 Concrete–Specification, performance, production and conformity.
[39] AS 3600-2009, “Concrete structures, standard by Standards Australia”, 2009.
[40] JSCE Guidelines for Concrete, “Standard Specifications for concrete structures”, No 16, Japan Society of Civil Engineers, 2007.
[42] Minitab 17 Statistical Software [Computer software]. Incorporation,Minitab
[43] AASHTO T358-15, “ Standard method of test for surface resistivity Indication of concretes Ability to resist chloride Ion penetration”, AASHTO 2006.
[44] Neville, A. (1995). Chloride attack of reinforced concrete: an overview. Materials and Structures, 28(2), 63.
[45] Gailius, A., Vacenovská, B., & Drochytka, R. (2010). Hazardous wastes recycling by solidification/stabilization method. Materials Science, 16(2), 165-169.
[46] AASHTO TP 64-03, “Standard Method of Test for predicting chloride penetration of hydraulic cement concrete by the rapid migration procedure.” AASHTO, 2006.
[47] NT BUILD 492, “Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-State Migration Experiment,” NTBULD, 1999.