مقایسه تاثیر استفاده از ریزدانه های سبک با پلیمر فوق جاذب بر روی جمع شدگی ناشی از خشک شدن بتن خودتراکم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشکده فنی، دانشگاه گیلان، رشت، ایران

2 دانشجوی دکتری عمران، گروه مهندسی عمران، پردیس دانشگاهی، دانشگاه گیلان، رشت ایران

10.22124/jcr.2025.28678.1673

چکیده

استفاده از عمل‌آوری درونی در بتن‌های خودتراکم به منظور رفع برخی مشکلات فنی مانند جمع‌شدگی ناشی از نسبت پایین آب به مواد سیمانی مورد توجه قرار گرفته است. در این تحقیق تاثیر کاربرد درصدهای مختلف ریزدانه سبک بازیافتی از خرده بلوک های بتن هوادار اتوکلاو شده و لیکا بعنوان ماده عمل آوری درونی در بتن خودتراکم بررسی و با خصوصیات بتن خودتراکم حاوی پلیمر فوق جاذب مقایسه شده است. آزمایش های انجام شده شامل آزمایش های مقاومت فشاری، مقاومت خمشی، جمع شدگی آزاد و مقید ناشی از خشک شدن، سرعت عبور امواج مافوق صوت می باشد. استفاده از مواد عمل آوری درونی موجب افزایش مقاومت های فشاری و خمشی و همچنین سرعت عبور امواج مافوق صوت بتن های خودتراکم در معرض شرایط خشک شدن شده اند. جمع شدگی آزاد بتن خودتراکم حاوی 0.1 درصد وزنی پلیمر فوق جاذب، بتن خودتراکم حاوی 30 درصد حجمی ریزدانه سبک بازیافتی و بتن خودتراکم حاوی 30 درصد حجمی لیکا نسبت به بتن شاهد بعد از 180 روز خشک شدن در رطوبت نسبی 50 درصد به ترتیب 15 درصد، 12 درصد و 9 درصد کاهش یافته است. متوسط عرض ترک جمع شدگی مقید بتن خودتراکم حاوی 0.1 درصد وزنی پلیمر فوق جاذب، بتن خودتراکم حاوی 30 درصد حجمی ریزدانه سبک بازیافتی و بتن خودتراکم حاوی 30 درصد حجمی لیکا نسبت به بتن شاهد در سن 28 روز به ترتیب 35 درصد، 21 درصد و 15 درصد کاهش یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of the effect of using lightweight fine aggregate with superabsorbent polymer on drying shrinkage caused by drying of self-compacting concrete

نویسندگان [English]

  • Ataollah Hajati Modaraei 1
  • Milad Rajabi Jorshari 2
1 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
2 Ph.D. Candidate, Department of Civil Engineering , international campus, university of Guilan , Rasht, Iran
چکیده [English]

The use of internal curing in self-compacting concrete to address technical issues such as shrinkage caused by a low water-to-cement ratio has been a focus of attention. This study, the effect of different percentages of recycled lightweight aggregate from autoclaved aerated concrete blocks (RAAC) and LECA (Light Expanded Clay Aggregate) as an internal curing agent in self-compacting concrete was investigated and compared with the properties of self-compacting concrete containing superabsorbent polymer (SAP). The tests include compressive strength, flexural strength, free and constrained shrinkage due to drying, and pulse velocity of ultrasonic waves. The use of internal curing materials has increased the compressive and flexural strengths, as well as the pulse velocity of ultrasonic waves, of self-compacting concrete exposed to drying conditions. The free shrinkage of self-compacting concrete containing 0.1% by weight of superabsorbent polymer, self-compacting concrete containing 30% by volume of recycled lightweight fine aggregate, and self-compacting concrete containing 30% by volume of LECA decreased by 15%, 12%, and 9%, respectively, compared to the control concrete after 180 days of drying at 50% relative humidity. The average width of the constrained shrinkage crack of self-compacting concrete containing 0.1% by weight of superabsorbent polymer, self-compacting concrete containing 30% by volume of recycled lightweight fine aggregate, and self-compacting concrete containing 30% by volume of LECA decreased by 35%, 21%, and 15%, respectively, compared to the control concrete at the age of 28 days.

کلیدواژه‌ها [English]

  • Self-compacting concrete
  • internal curing
  • superabsorbent polymer
  • recycled lightweight fine aggregate
  • Leca
[1] Athiyamaan, V., Admixture-based self-compacted concrete with self-curing concrete techniques a state of art of review, Cleaner Engineering and Technology, 5, 100250, 2021.
[2] Tang, C., Dong, R.R., Tang, Zh., Long, G., Ma, G., Wang, H., Huang, Y., Effect of SAP on the properties and microstructure of cement-based materials in the low humidity environment, Case Studies in Construction Materials, 20, e03001, 2024.
[3] Ma, X., Liu, J., Shi, C., A review on the use of LWA as an internal curing agent of high performance cement-based materials, Construction and Building Materials, 2018, 358-393, 2019.
[4] Yang L., Ma X., Jianhui Liu, J., Hu, X., Wu, Z., Shi, C., Improving the effectiveness of internal curing through engineering the pore structure of lightweight aggregates, Cement and Concrete Composites, 134, 104773, 2022.
[5] Yang, J., Liu, L., Liao, Q., Wu, J., Li, J., Zhang, L., Effect of superabsorbent polymers on the drying and autogenous shrinkage properties of self-leveling mortar, Construction and Building Materials, 201, 401–407, 2019.
[6]  Soliman, A.M., Nehdi, M.L., Effect of partially hydrated cementitious materials and superabsorbent polymer on early-age shrinkage of UHPC, Construction and Building Materials, 41, 270–275, 2013.
[7] Tutkun, B., Barlay, E.S., Yalçınkaya, C., Yazıcı, H., Effect of internal curing on shrinkage and cracking potential under autogenous and drying conditions, Construction and Building Materials, 409, 134078, 2023.
[8] Arayeshgar, M.,  Madandoust, R., Ranjbar, M. M.., A comparative study on superabsorbent polymer (SAP) and recycled lightweight aggregate (LWA) as internal curing agents for high-strength concrete (HSC). International Journal of Engineering, Transactions B: Applications. 2024.
[9] Famili, H., Saryazdi, M. K., and Parhizkar, T., Internal curing of high strength self consolidating concrete by saturated lightweight aggregate-effects on material properties, International Journal of Civil Engineering, vol. 10, no. 3, pp. 210-221, 2012.
[10] Bymaster, J.C., Dang, C.N., Floyd, R.W., Hale, W.M., Prestress losses in pretensioned concrete beams cast with lightweight self-consolidating concrete, Structures, 2, 50–57, 2015.
[11] Rajamanickam, G. and Vaiyapuri, R., Self compacting self curing concrete with lightweight aggregates, Građevinar, vol. 68, no. 04., pp. 279-285, 2016.
[12] Gopi, R., Revathi, V., Influence of presaturated light expanded clay and fly ash aggregate in slef compcating concrete, Revista Romana de Materiale, vol. 49, no. 3, pp. 370-378, 2019.
[13] Madduru, S. R. C., Shaik, K. S., Velivela, R., and Karri, V. K., Hydrophilic and hydrophobic chemicals as self curing agents in self compacting concrete, Journal of Building Engineering, vol. 28, p. 101008, 2020.
[14] Güneyisi, E., Gesólu, M., Altan, I., Öz, H.Ö., Utilization of cold bonded fly ash lightweight fine aggregates as a partial substitution of natural fine aggregate in self-compacting mortars, Construct. Build. Mater., 74, 9–16, 2015.
[15] Saravanan, M., Gopi, R., Harihanandh, M., Durability properties of self compacting self curing concrete with presaturated light weight aggregates, Materials Today: Proceedings 45, 7805–7809, 2021.
[16] Huang, X., Liu, X., Rong, H., Yang, X., Duan, Y., Ren, T., Effect of super-absorbent polymer (SAP) incorporation method on mechanical and shrinkage properties of internally cured concrete, Materials, 15, 7854, 2022.
[17] Lothenbach, B.; Winnefeld, F. Thermodynamic modelling of the hydration of Portland cement. Cem. Concr. Res., 36, 209–226, 2006.
[18] Wang, K., Dong, K.,  Guo, J.,  Du H., Absorption and Release mechanism of superabsorbent polymers and its impact on shrinkage and durability of internally cured concrete – A review, Case Studies in Construction Materials, 21, e03909, 2024.
[19] Zhao, S., Jensen, O. M., & Hasholt, M. T., Measuring absorption of superabsorbent polymers in cementitious environments. Materials and Structures, 53(1), 2020.
[20] Kamal M.M., Safana M.A., Bashandya A.A., Khalil A.M., Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete, Journal of Building Engineering, 16, 79–93, 2018.
[21] Hong, S.-H.; Choi, J.-S., Yuan, T.-F.; Yoon, Y.-S. Mechanical and Electrical Characteristics of Lightweight Aggregate Concrete Reinforced with Steel Fibers. Materials, 14, 6505, 2021.
[22] Milla, J, Rupnow, T, Saunders, W.J., Cooper S., Measuring the influence of Pre-Wetted Lightweight aggregates on concrete's surface resistivity. Construction and Building Materials, 2021.
[23] Abadel, A.A., Physical, mechanical, and microstructure characteristics of ultra-high-performance concrete containing lightweight aggregates. Materials, 16(13), p. 4883, 2023.
[24] Korda, E., De-Schutter, G., Aggelis, D.G., Acoustic signatures of hydration and microcracking in early-age concrete, Developments in the Built Environment, 17, 100353, 2024.
[25] Shen, D., Cracking control on early-age concrete through Internal Curing, springer, 2022.
[26] Alanazi, H., Elalaoui, O., Adamu, M., Alaswad, S.O., Ibrahim, Y.E., Abadel, A.A., Al-Fuhaid, A.F., Mechanical and microstructural properties of ultra-high performance concrete with lightweight aggregates, Buildings, 12, 1783, 2022.
[27] Venkateswarlu, K., Deo, S.V., Murmu, M., Effect of Super Absorbent Polymer on Workability, Strength and Durability of Self Consolidating Concrete, International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 05, 1118-123, 2021.
[28] Kumar, P., Pasla, D., Saravanan, T.J., Self-compacting lightweight aggregate concrete and its properties: A review, Construction and Building Materials, 375, 130861, 2023.
[29] Zeng, X., Deng, Q., Li, S., Gao, H., & Yu, Q.,  Effects of autogenous shrinkage microcracks on UHPC: Insights from a machine learning based crack quantification approach, Construction and Building Materials, 428, 136400, 2024.
[30] Mousa, M.I., Mohamed, G., Mahdy, M.G., Ahmed, H., Abdel-Reheem, A.H., Yehia, A.Z., Self-curing concrete types; water retention and durability, Alexandria Engineering Journal, 54, 565–575, 2015.
[31] Alaskar, A, Alshannag, M, Higazey, M., Mechanical properties and durability of high-performance concrete internally cured using lightweight aggregates. Construction and Building Materials, 288,122998, 2021.
[32] Maghfouri, M., Shafigh, P., Alimohammadi, V., Doroudi, Y., Aslam, M., Appropriate drying shrinkage prediction models for lightweight concrete containing coarse agro-waste aggregate, Journal of Building Engineering, 29, 101148, 2020.
[33] Liu Y., Wei Y., Ma L., Wang L., Restrained shrinkage behavior of internally-cured UHPC using calcined bauxite aggregate in the ring test and UHPC-concrete composite slab, Cement and Concrete Composites, 134, 104805, 2022.
[34] Arckarapunyathorn, W., Markpiban, P., Sahamitmongkol, R., Impact of superabsorbent polymer on shrinkage and compressive strength of mortar and concrete, Sustainability, 16, 2158, 2024