[1]. Gulkan, P., & Sozen, M.A. Inelastic responses of reinforced concrete structure to earthquake motions. Journal proceedings. Vol. 71. No. 12. 1974.
[2]. Jones, N. Structural Impact, Cambridge: Cambridge University Press, Second Edition, pp. 479-510, 2012.
[3]. Oshir R.E., & Alves M. Scaling impacted structures, Archive of Applied Mechanics, Vol. 74, No. 1-2, pp. 130-145, 2004.
[4]. Alves M., & Oshiro R.E. Scaling the impact of a mass on a structure, International Journal of Impact Engineering, Vol. 32, No. 7, pp. 1158-1173, 2006.
[5]. Oshiro R.E., & Alves M. Scaling of cylindrical shells under axial impact, International Journal of Impact Engineering, Vol. 34, No. 1, pp. 89-103, 2007.
[6]. Oshiro R.E., & Alves M. Scaling of structures subject to impact loads when using a power law constitutive equation, International Journal of Solids and Structures, Vol. 46, No. 18-19, pp. 3412-3421, 2009.
[7]. Trimiño L.F., & Cronin D.S. Non-direct similitude technique applied to the dynamic axial impact of bonded crush tubes, International Journal of Impact Engineering, Vol. 64, No. 2, pp. 39-52, 2014.
[8]. Mazzariol L.M., Oshiro R.E., & Alves M., A method to represent impacted structures using scaled models made of different materials, International Journal of Impact Engineering, Vol. 90, No. 4, pp. 81-94, 2016.
[9]. Alves M., & Oshiro R.E. Scaling impacted structures when the prototype and the model are made of different materials, International Journal of Solids and Structures, Vol. 43, No. 9, pp. 2744-2760, 2006.
[10]. Ramu M., Raja V.P., & Thyla P.R., Establishment of structural similitude for elastic models and validation of scaling laws, KSCE Journal of Civil Engineering, Vol. 17, No. 1, pp. 139-144, 2013.
[11]. Mazzariol L.M., & Alves M., Experimental study on scaling of circular tubes subjected to dynamic axial crushing using models of different materials, 22nd International Congress of Mechanical Engineering, Ribeirão Preto, Brazil, November 3-7, 2013.
[12]. Sadeghi H., Alitavoli M., & Darvizeh A., Finite similitude in high rate dynamic behavior of structures under impact loads, Modares Mechanical Engineering, Vol. 18, No. 5, pp. 263-274, 2018. (In Persian)
[13]. Davey K., Darvizeh R., & Al-Tamimi A., Scaled metal forming experiments: a transport equation approach, International Journal of Solids and Structures, Vol. 125, No. 10, pp. 184-205, 2017.
[14]. Sadeghi H., Davey K., Darvizeh, R., & Darvizeh A., Scaled models for failure under impact loading. International Journal of Impact Engineering, 129, pp.36-56, 2019.
[15]. Davey, K., Sadeghi, H., Darvizeh, R., Golbaf, A. and Darvizeh, A., A finite similitude approach to scaled impact mechanics. International Journal of Impact Engineering, 148, p.103744, 2021.
[16]. Zhang J., Davey K., Darvizeh R., & Sadeghi H., A two-experiment approach to physical modelling: damage and failure under high-rate loading. Thin-Walled Structures, 179, p.109589, 2022.
[17]. Darvizeh R., & Davey K., A transport approach for analysis of shock waves in cellular materials, International Journal of Impact Engineering, Vol. 82, No. 8, pp. 59-73, 2015.
[18]. Darvizeh R., & Davey K., Non-physical finite element method: multiple material discontinuities, Computers and Structures, Vol. 164, No. 2, pp. 145-160, 2016.
[19]. Sadeghi, H., Davey, K., Darvizeh, R., & Darvizeh, A. A scaled framework for strain rate sensitive structures subjected to high rate impact loading. International Journal of Impact Engineering, 125, pp. 229-245, 2019.