بررسی تأثیر استفاده از انواع مختلف فوق روان‌کننده بر مشخصات فیزیکی و مکانیکی ملات‌های سیمانی حاوی اکسید گرافن و روباره کوره بلند آهن‌گدازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی عمران، واحد فومن و شفت، دانشگاه آزاد اسلامی، فومن، ایران

2 استادیار گروه مهندسی عمران، واحد فومن و شفت، دانشگاه آزاد اسلامی، فومن، ایران.

3 مربی گروه مهندسی عمران، دانشگاه فنی و حرفه ای، تهران، ایران

10.22124/jcr.2024.27771.1664

چکیده

یکی از انواع نانوموادی که اثرات تقویت کنندگی آن بر مخلوط های سیمانی در تحقیقات اخیر مشاهده شده است، اکسید گرافن می باشد. با این وجود، پخش شوندگی یکنواخت و پایدار این نانوصفحات در کامپوزیت های سیمانی، موردی است که استفاده از آن را به چالشی جدی تبدیل کرده است. یکی از روش های پیشنهادی به منظور پخش یکنواخت اکسید گرافن، استفاده از افزودنی های فوق روان کننده و پوزولان ها می باشد. لذا این مطالعه به ارزیابی تاثیر استفاده از انواع مختلف فوق روان کننده بر مشخصات فیزیکی و مکانیکی ملات های سیمانی حاوی اکسید گرافن و روباره کوره بلند آهن گدازی می پردازد. در این راستا، مخلوط هایی حاوی درصد های مختلف از روباره و اکسیدگرافن و سه نوع مختلف از فوق روان کننده ساخته شده و با هدف ارزیابی مشخصات فیزیکی و مکانیکی و همچنین، تاثیر نوع روان کننده مصرفی بر این مشخصات، در سنین مختلف تحت آزمایش قرار گرفتند. نتایج حاکی از آن است که استفاده از اکسید گرافن به میزان 05/0 درصد وزنی بهترین عملکرد را از حیث اصلاح خواص فیزیکی و مکانیکی به همراه داشته است. از سویی دیگر، با حضور روباره در اختلاط، استفاده از اکسید گرافن به میزان 03/0 درصد وزن مصالح سیمانی منجر به بهبود مشخصات ملات های حاصل گردید. همچنین، استفاده از فوق روان کننده لیگنو-کربوکسیلات در اختلاط با و بدون حضور روباره منجر به بروز مشخصات مقاومتی بالاتر گردید که این امر می تواند گواهی بر پخش مناسب تر و پایداری بیشتر نانوصفحات اکسید گرافن در ماتریس سیمانی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An investigation on the Effects of Superplasticizer Type on Physical and Mechanical Properties of Cement Mortars Containing Graphene Oxide and Ground-Granulated Blast Furnace Slag

نویسندگان [English]

  • Hossein Taslimi Kharratmahalleh 1
  • Miralimohammad Mirgozar Langeroudi 2
  • Hamidreza Hosseinzadeh 1
  • Seyyed Mojtaba Ostovar Chomachaei 3
1 MSc Student, Department of Civil Engineering, Fouman and Shaft Branch, Islamic Azad University, Fouman, Iran
2 Department of Civil Engineering, Fouman and Shaft Branch, Islamic Azad University, Fouman, Iran
3 Department of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran.
چکیده [English]

Graphene oxide (GO) is a nanomaterial that has recently demonstrated promising reinforcing effects in cementitious composites. However, the uniform and stable dispersion of GO nanosheets within these composites remains a significant challenge. One proposed approach to achieve uniform GO dispersion is to utilize superplasticizers and pozzolans. This study evaluates the influence of different superplasticizers on the physical and mechanical properties of cement mortars containing GO and blast furnace slag (BFS). Mortar mixtures were prepared with varying GO and BFS content and three distinct superplasticizers. The physical and mechanical properties of these mortars were assessed at different ages to investigate their characteristics and the influence of superplasticizer type. The results indicate that the addition of 0.05 wt% GO yielded the most significant improvements in physical and mechanical properties. Furthermore, the incorporation of 0.03 wt% GO in BFS-containing mixtures led to enhanced mortar characteristics. Additionally, using a lignosulfonate-based superplasticizer with and without BFS resulted in superior strength properties. This suggests a more effective dispersion and enhanced stability of GO nanosheets within the cement matrix.

کلیدواژه‌ها [English]

  • Cement Mortar
  • Graphene Oxide
  • Ground Granulated Blast-Furnace Slag
  • Physical and Mechanical Properties
  • SEM
[1]           P. Balaguru and K. Chong, "Nanotechnology and concrete: research opportunities," Proceedings of the ACI session on nanotechnology of concrete: recent developments and future perspectives, pp. 15-28, 2006.
[2]           Y. Suo, R. Guo, H. Xia, Y. Yang, B. Zhou, and Z. Zhao, "A review of graphene oxide/cement composites: Performance, functionality, mechanisms, and prospects," Journal of Building Engineering, vol. 53, p. 104502, 2022.
[3]           S. Chuah, Z. Pan, J. G. Sanjayan, C. M. Wang, and W. H. Duan, "Nano reinforced cement and concrete composites and new perspective from graphene oxide," Construction and Building materials, vol. 73, pp. 113-124, 2014.
[4]           Z. Pan et al., "Mechanical properties and microstructure of a graphene oxide–cement composite," Cement and Concrete Composites, vol. 58, pp. 140-147, 2015.
[5]           L. Zhao et al., "Investigation of the effectiveness of PC@ GO on the reinforcement for cement composites," Construction and Building Materials, vol. 113, pp. 470-478, 2016.
[6]           X. Li, L. Wang, Y. Liu, W. Li, B. Dong, and W. H. Duan, "Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength," Cement and Concrete Composites, vol. 92, pp. 145-154, 2018.
[7]           M. A. Atrian, K. Hosseini, S. Mirvalad, and A. Habibnejad Korayem, "Effect of Rice Husk Ash on Dispersion of Graphene Oxide in Alkaline Cementitious Environment," Journal of Materials in Civil Engineering, vol. 36, no. 3, p. 04023600, 2024.
[8]           K. Hosseini, M. A. Atrian, S. Mirvalad, A. H. Korayem, and M. Ebrahimi, "Influence of ground granulated blast furnace slag on mechanical properties and durability of graphene oxide‐reinforced cementitious mortars," Structural Concrete, vol. 24, no. 5, pp. 6270-6282, 2023.
[9]           C. S. R. Indukuri, R. Nerella, and S. R. C. Madduru, "Workability, microstructure, strength properties and durability properties of graphene oxide reinforced cement paste," Australian Journal of Civil Engineering, vol. 18, no. 1, pp. 73-81, 2020.
[10]         S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu, and Q. Zhou, "Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites," Construction and building materials, vol. 49, pp. 121-127, 2013.
[11]         J. Vera-Agullo et al., "Mortar and concrete reinforced with nanomaterials," in Nanotechnology in Construction 3: Proceedings of the NICOM3: Springer, 2009, pp. 383-388.
[12]         M. Mokhtar, S. Abo-El-Enein, M. Hassaan, M. Morsy, and M. Khalil, "Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement," Construction and Building Materials, vol. 138, pp. 333-339, 2017.
[13]         A. Radman and N. Joorabchi, "Property assessment of concretes with graphene oxide mixed cement," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 652, no. 1, p. 012043: IOP Publishing.
[14]         H. Peng, Y. Ge, C. Cai, Y. Zhang, and Z. Liu, "Mechanical properties and microstructure of graphene oxide cement-based composites," Construction and Building Materials, vol. 194, pp. 102-109, 2019.
[15]         S. Devi and R. Khan, "Effect of graphene oxide on mechanical and durability performance of concrete," Journal of Building Engineering, vol. 27, p. 101007, 2020.
[16]         A. Sabziparvar, E. Hosseini, V. Chiniforush, and A. Korayem, "Barriers to achieving highly dispersed graphene oxide in cementitious composites: An experimental and computational study," Construction and Building Materials, vol. 199, pp. 269-278, 2019.
[17]         K. Amini, A. Ghasemi, S. S. Amiri, S. Mirvalad, and A. H. Korayem, "The synergic effects of metakaolin and polycarboxylate-ether on dispersion of graphene oxide in cementitious environments and macro-level properties of graphene oxide modified cement composites," Construction and Building Materials, vol. 270, p. 121462, 2021.
[18]         X. Li et al., "Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength," Construction and Building Materials, vol. 123, pp. 327-335, 2016.
[19]         P. Łukowski and A. Salih, "Durability of mortars containing ground granulated blast-furnace slag in acid and sulphate environment," Procedia Engineering, vol. 108, pp. 47-54, 2015.
[20]         Ş. C. Bostancı, M. Limbachiya, and H. Kew, "Portland slag and composites cement concretes: engineering and durability properties," Journal of Cleaner Production, vol. 112, pp. 542-552, 2016.
[21]         C. Bilim, C. D. Atiş, H. Tanyildizi, and O. Karahan, "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network," Advances in Engineering Software, vol. 40, no. 5, pp. 334-340, 2009.
[22]         C. S. R. Indukuri, R. Nerella, and S. R. C. Madduru, "Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites," Construction and Building Materials, vol. 229, p. 116863, 2019.
[23]         Q. Wang, S. Li, S. Pan, X. Cui, D. J. Corr, and S. P. Shah, "Effect of graphene oxide on the hydration and microstructure of fly ash-cement system," Construction and Building Materials, vol. 198, pp. 106-119, 2019.
[24]         M. Newell and E. Garcia-Taengua, "Fresh and hardened state properties of hybrid graphene oxide/nanosilica cement composites," Construction and Building Materials, vol. 221, pp. 433-442, 2019.
[25]         R. Roy, A. Mitra, A. T. Ganesh, and V. Sairam, "Effect of Graphene Oxide Nanosheets dispersion in cement mortar composites incorporating Metakaolin and Silica Fume," Construction and Building Materials, vol. 186, pp. 514-524, 2018.
[26]         L. Zhao et al., "Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution," Carbon, vol. 127, pp. 255-269, 2018.
[27]         A. Standard, "Standard specification for Portland cement," ASTM International, West Conshohocken, PA, 2009.
[28]         C. Astm, "Standard test method for sieve analysis of fine and coarse aggregates," ASTM C136-06, 2006.
[29]         Available: https://www.nanosany.com/
[30]         C. Astm, "305, Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency," ASTM International, 1999.
[31]         A. ASTM, "Standard test method for dry and wet bulk density, water absorption, and apparent porosity of thin sections of glass-fiber reinforced concrete," ASTM C948-81, 2016.
[32]         A. S. f. Testing and M. C. C.-o. Cement, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International, 2013.
[33]         A. C348, "Standard test method for flexural strength of hydraulic-cement mortars," American Society for Testing and Materials International, West Conshohocken, Pennsylvania, United States, 2008.
[34]      A. Sadrmomtazi, B. Tahmouresi, and M. Amooie, "Permeability and mechanical properties of binary and ternary cementitious mixtures," Advances in concrete construction, vol. 5, no. 5, pp. 423-436, 2017.