بررسی آزمایشگاهی تاثیر دوده سیلیس، مواد هوازا و نسبت آب به مواد سیمانی بر ریز ساختار و دوام پوسته‌شدگی روسازی‌های بتنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی امیرکبیر

2 عضو هیئت علمی دانشکده عمران دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)

3 مرکز تحقیقات راه، مسکن و شهرسازی

4 مرکز تحقیقات راه مسکن و شهرسازی

10.22124/jcr.2021.19864.1502

چکیده

پوسته‌شدگی در مجاورت نمک‌های یخ‌زدا یکی از چالش‌های اساسی دوام در روسازی‌های بتنی در مناطق سردسیر شناخته می‌شود. در این تحقیق اثر دوده سیلیس و مواد هوازا در روسازی‌های بتنی با سه نسبت آب به سیمان 35/0، 4/0 و 45/0 بر مقاومت فشاری، مقاومت الکتریکی و دوام بتن در برابر پوسته‌شدگی در مجاورت نمک یخ زدا بررسی شده و ساختار میکروسکوپی با استفاده از روش تخلخل سنجی جیوه و تصاویر میکروسکوپ الکترونی مورد بررسی قرار گرفته است. نتایج حاکی از آن است که بهترین عملکرد در آزمایش پوسته شدگی متلعق به نمونه حاوی دوده سیلیس و مواد هوازا می باشد. نتایج تخلخل‌سنجی جیوه نشان داد که دوده سیلیس ضمن اصلاح ریزساختار باعث کاهش حجم حفرات کل و شعاع حفره بحرانی نسبت به طرح شاهد گردیده است و از سوی دیگر به علت فعالیت پوزولانی مناسب حجم حفرات کوچکتر از 10 نانو متر را افزایش داده است. تصاویر میکروسکوپ الکترونی طرح ها حاکی از آن است که دوده سیلیس به علت فعالیت پوزولانی موثر باعث متراکم تر شدن ژل گردید. تصاویر طرح های هوادار حاکی از تشکیل حباب های کروی ، پایدار و دارای توزیع یکنواخت می باشد که مشاهدات ریز ساختاری، یافته های ماکروسکوپی از جمله دوام پوسته شدگی، مقاومت فشاری و مقاومت الکتریکی را تایید می‌نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental study of the effects of water-binder ratio, silica fume and air-entrainment on the microstructure and salt scaling resistance of concrete pavements

نویسندگان [English]

  • Mojtaba Nili 1
  • Ali Akbar Ramezanianpour 2
  • Jafar Sobahni 3
  • A. M. Raeiss ghasemi 4
1 Amirkabir University of Technology
2 Amirkabir University of Technology
3 Departement of concrete Technology, Road, Housing and Urban Development Research Center
4 Road, Housing and Urban Development Research Center
چکیده [English]

Salt scaling of concrete pavements is known as a serious problem in cold regions. In the present study the effect of water-binder (W/B) ratio, silica fume and air entraining on the salt scaling resistance, compressive strength and electrical resistance were investigated. Microstructure of the concretes was assessed by mercury intrusion porosimetry and scanning electron microscope. Water-binder ratios were 0.35, 0.40 and 0.45. Silica fume was used, by 8% weight of cement, in the predetermined mixtures. The results showed that the best salt scaling resistance was correspondent to the air entrained silica fume specimens. By reducing the water-binder ratio, the amount of surface scaling was decreased. The MIP results declared that silica fume refined the microstructure and also decreased the total porosity and critical pore radius compared with those for the reference specimens. Furthermore, the MIP results of the silica fume specimens declared that the pores smaller than 10 nano were increased, due to the effective pozzolanic reaction. The scanning electron microscope images showed that the concrete containing silica fume had a denser gel compared with those for the reference ones. Introducing silica fume into the specimens had remarkable effect on the later age electrical resistance of the concrete. It was concluded that the highest electrical resistance belonged to the durable specimens. The results of the present study clarify how the micro structure may influence the salt scaling resistance of concrete pavement, this achievement will surely reduce the cost of rehabilitation of concrete pavements in the cold regions.

کلیدواژه‌ها [English]

  • Salt scaling: Microstructure
  • : Silica fume
  • : air-entrainment
  • : Concrete pavement
[1] Verbeck, G.J. and Klieger, Studies of' salt' scaling of concrete. Highway Research Board Bulletin, Vol. 150, 1-17, 1957.
[2] Arnfelt, H., Damage on concrete pavements by wintertime salt treatment. In Meddelande (Vol. 66). Statens Väginstitut Stockholm, 1943.
[3] Jana, D., Concrete, Construction, or Salt—Which Causes Scaling? Concrete international, 26(11), pp.31-38, 2004.
[4] Alonso, C., Andrade, C., Castellote, M. and Castro, P., Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cement and Concrete research, 30(7), pp.1047-1055, 2000.
[5] Valenza II, J.J. and Scherer, G.W., A review of salt scaling: II. Mechanisms. Cement and Concrete Research, 37(7), pp.1022-1034, 2007.
[6] Scherer, G.W. and Valenza, J.J., Mechanisms of frost damage. Materials science of concrete, 7(60), pp.209-246, 2005.
[7] Scherer, G.W., Crystallization in pores. Cement and Concrete research, 29(8), pp.1347-1358, 1999.
[8] Valenza, J.J., II. Mechanism for salt scaling (Doctoral dissertation, PhD thesis, Princeton University),www.jvalenza.com/thesis.html, 2005.
[9] Ciardullo, J.P., Sweeney, D.J. and Scherer, G.W., Thermal expansion kinetics: Method to measure permeability of cementitious materials, IV. Effect of thermal gradients and viscoelasticity. Journal of the American Ceramic Society, 88(5), pp.1213-1221, 2005.
[10] Scherer, G.W., Characterization of saturated porous bodies. Materials and structures, 37(1), pp.21-30, 2004.
[11] Valenza, J.J. and Scherer, G.W., Mechanism for salt scaling. Journal of the American Ceramic Society, 89(4), pp.1161-1179, 2006.
[12] Sun, Z. and Scherer, G.W., Effect of air voids on salt scaling and internal freezing. Cement and Concrete Research, 40(2), pp.260-270, 2010.
[13] Valenza II, J.J. and Scherer, G.W., A review of salt scaling: I. Phenomenology. Cement and Concrete Research, 37(7), pp.1007-1021, 2007.
[14] Wu, Z., Libre, N.A. and Khayat, K.H., Factors affecting air-entrainment and performance of roller compacted concrete. Construction and Building Materials, 259, p.120413, 2020.
[15] Scrivener, K.L., Crumbie, A.K. and Laugesen, P., The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface science, 12(4), pp.411-421, 2004.
[16] Scrivener, K.L., Bentur, A. and Pratt, P.L., Quantitative characterization of the transition zone in high strength concretes. Advances in Cement Research, 1(4), pp.230-237, 1988.
[17] Detwiler, R.J. and Mehta, P.K., Chemical and physical effects of silica fume on the mechanical behavior of concrete. Materials Journal, 86(6), pp.609-614, 1989.
[18] Gonen, T. and Yazicioglu, S., The influence of compaction pores on sorptivity and carbonation of concrete. Construction and building materials, 21(5), pp.1040-1045, 2007.
[19] Basheer, L., Basheer, P.A.M. and Long, A.E., Influence of coarse aggregate on the permeation, durability and the microstructure characteristics of ordinary Portland cement concrete. Construction and Building Materials, 19(9), pp.682-690, 2005.
[20] Hooton, R.D., Permeability and pore structure of cement pastes containing fly ash, slag, and silica fume. In Blended cements. ASTM International, 1986.
[21] Zhang, P., Li, D., Qiao, Y., Zhang, S., Sun, C. and Zhao, T., Effect of air entrainment on the mechanical properties, chloride migration, and microstructure of ordinary concrete and fly ash concrete. Journal of Materials in Civil Engineering, 30(10), p.04018265, 2018.
[22] Mehta, P.K., Studies on blended Portland cements containing Santorin earth. Cement and Concrete research, 11(4), pp.507-518, 1981.
[23] Wu, Z., Shi, C. and Khayat, K.H., Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cement and Concrete Composites, 71, pp.97-109, 2016.
[24] ACI 201.2 R, Guide to durable concrete. Farmington Hills, MI: American Concrete Institute, 2008.
[25] BS EN 12390-3, Testing hardened concrete-Part3: Compressive strength of test specimens, 2009.
[26] ASTM C672/C672M-12, Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals, 2012.
[27] AASHTO T358-17, Standard Method of Test for Surface Resistivity Indicating Concrete’s Ability to Resist Chloride Ion Penetration. Standard by American Association of State and Highway Transport. Official, 2017.
[28] Remzi S.; Mehmet A.; Rüstem G.; Cafer C., Determination of the optimum conditions for de-icing salt scaling resistance of concrete by visual examination and surface scaling, J. Construction and Building Materials 24, 2010, pp. 353–360, 2010.
[29] Marchand, J., Pigeon, M., Boisvert, J., Isabelle, H. L., and Houdusse, O., Deicer salt scaling resistance of roller compacted concrete pavements containing fly ash and silica fume. ACI Special Publication, SP-132, V.M. Malhotra (Ed.), pp. 151-178, 1992.
[30] Powers, T. C. and Helmuth, R. A., Theory of volume changes in hardened Portland-cement paste during freezing. Proc. Highw. Res. Board, Vol. 32, pp. 285-297, 1953.
[31] Powers, T.C., Properties of Fresh Concrete, John Wiley and Sons. Inc., New York, p.301, 1986.
[32] R. Polder, C. Andrade, B. Elsener, O. Vennesland, J. Gulikers, R. Weidert, et al., "Test methods for on site measurement of resistivity of concrete," Materials and Structures, vol. 33, pp. 603-611, 2000.
[33] Shi, C., Stegemann, J.A. and Caldwell, R.J., Effect of supplementary cementing materials on the specific conductivity of pore solution and its implications on the rapid chloride permeability test (AASHTO T277 and ASTM C1202) results. Materials Journal, 95(4), pp.389-394, 1998.
 [34] Halamickova, P., Detwiler, R.J., Bentz, D.P. and Garboczi, E.J., Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter. Cement and concrete research, 25(4), pp.790-802, 1995.
[35] P.K. Metha, P.J.M. Monterio, Concrete, Microstructure, Properties and Materials, McGraw-Hill, London, 2006.