]1[ رمضانیانپور ع. ا.، کاظمیان ع.، (1397). بتن خودتراکم: فناوری و کاربرد. انتشارات دانشگاه صنعتی امیرکبیر، صص 155-153.
[2] Ramezanianpour, A. A., Kazemian, A., Nikravan, M., Mahpur, A., Moghaddam, M. A., (2013). Ivfluence of the low-activity slag and silica fume on the fresh properties and durability of high performance self-compacting concrete. International Conference on Sustainable Construction Materials and Technologies (SCMT3), Kyoto, Japan.
[3] Dasarathy, A. K., Tamil Selvi, M., Leela, D., Kumar, S., (2018). Self-compacting concrete – an analysis of properties using Fly Ash. International Journal of Engineering & Technology, Vol. 7, No. 2, pp. 135-139.
]4[ مدندوست، ر.، رنجبرم. م.، محسنی، ا.، (1392). تأثیر مواد نانو بر خواص مهندسی ملات خودتراکم حاوی خاکستربادی. مجله تحقیقات بتن. سال پنجم. شماره دوم. پاییز و زمستان 92. صص 67-55.
[5] Niewiadomki, P., Hola, J., Cwirzen, A., (2018). Study on properties of self-compacting concrete modified with nanoparticles. Archives of Civil and Mechanical Engineering, Vol. 18, No. 3, pp. 877-886.
[6] Golewski, G. L., Sadowski, T., (2014). An analysis of shear fracture toughness K IIc and microstructure in concretes containing fly-ash. Construction and Building Materials, Vol. 51, No. 2, pp. 207–214.
[7] Golewski, G. L., Sadowski, T., (2017). The fracture toughness the K IIIc of concretes with F fly ash (FA) additive. Construction and Building Materials, Vo.143 No. 10, pp. 444–454.
]8[ هدایتینیا، ف.، دلنواز، م.، امامزاده س. ش.، (1397). ارزیابی اثرات زیستمحیطی چرخه عمر بتن خودتراکم دارای قابلیت اجرایی در سدهای ساختهشده با بتن سنگریزهای. دهمین کنفرانس ملی بتن، مرکز تحقیقات راه، مسکن و شهرسازی، تهران، ایران.
[9] Ali, M. B., Saidur, R., Hossain, M. S., (2011). A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews, Vol. 15, No. 1, pp. 2252–2261.
[10] Ricardo de Matos, P., Foiato, M., Prudêncio Jr, L. R., (2019). Ecological, fresh state and long-term mechanical properties of high-volume fly ash high-performance self-compacting concrete. Construction and Building Materials, Vol. 203, No. 2, pp. 282–293.
[11] BIBM, CEMBUREAU, EFCA, EFNARC, ERMCO. European guidelines for self-compacting concrete: specification. Production and use, 2005.
]12[ احمدی، س. ا.، هوایی، غ.، (1393). لزوم شناخت بیشتر بتن خود تراکم و اثرات آن بر اقتصاد طرحها. اولین کنگره ملی مهندسی ساخت و ارزیابی پروژه های عمرانی. گرگان. اردیبهشت 1393.
]13[ رمضانیانپور، ع.ا.، ذوالفقارنسب، آ.، بهمنزاده، ف.، پور ابراهیمی، م.ر.، حسنپور، ص.، بوشهری، ر.، رمضانیانپور، ا.م.، (1394). بررسی عملکرد بتن توانمند در برابر حمله سولفوریک اسید. هفتمین کنفرانس ملی سالیانه بتن ایران، تهران.
[14] Samimi, K., Kamali-Bernard, S., Maghsoudi, A.A., Maghsoudi, M., (2016). The influence of metakaolin and natural zeolite on the rheology, engineering and durability properties of high strength self-compacting concrete at early age. 2nd International Conference Sustainability ICCS16. Spain, Madrid, 13-15 June 2016.
]15[ بهفرنیا، ک.، حسنزاده، م.، (1393). مباحث پیشرفته در فناوری سیمان و پوزولان (به همراه آزمایشهای استاندارد). انتشارات جهاد دانشگاهی واحد اصفهان، صص 184-183.
[16] Owaid, H. M., Hamid, R., Taha, M.R., (2012). A review of sustainable supplementary cementitious materials as an alternative to all-Portland cement mortar and concrete. Australian Journal of Basic and Applied Sciences, Vol. 6. No. 9, pp. 287-303.
[17] ASTM C1611– 18. Standard test method for slump flow of self-consolidating concrete. Annual Book of ASTM Standard.
[18] BS EN 12350: 2009. Testing fresh concrete, (London: British Standards Institution)
[19] ASTM C1621 – 16. Standard Test Method for Compressive Properties of Rigid Cellular Plastics. Annual Book of ASTM Standard.
[20] BS EN 11044. Testing fresh self-compacting concrete-determination of confined flow ability in 'U-SHAPE BOX', (London: British Standards Institution)
[21] BIBM, CEMBUREAU, EFCA, EFNARC, ERMCO. European guidelines for self-compacting concrete: specification. Production and use; 2005.
[22] BS EN 12390. Testing hardened concrete, (London: British Standards Institution).
[23] ASTM C39 / C39M - 20. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. Annual Book of ASTM Standard.
[24] ASTM C496 / C496M - 17. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. Annual Book of ASTM Standard.
[25] ASTM C469 – 02. Standard test method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. Annual Book of ASTM Standard.
[26] BS EN 12350-8:2019, Testing hardened concrete. Depth of penetration of water under pressure. (London: British Standards Institution).
[27] ASTM C1202 – 19. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. Annual Book of ASTM Standard.
[28] ASTM C1012 / C1012M - 18b. Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. Annual Book of ASTM Standard.
[29] Vejmelkovaa, E., Kepperta, M., Grzeszczykb, S., Skalin´ skib, B., Cˇ erny´ a, B. (2011), Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag, Construction and Building Materials, Vol. 25, No. 4, pp. 1325-1331.
[30] Fernandez R., Martirena F., Scrivener K. L., (2011). The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, Vol. 41, No. 1, pp. 113-122.
[31] Marsh B., Day R., (1988). Pozzolanic and cementitious reactions of fly ash in blended cement pastes. Cement and Concrete Research, Vol. 18, No. 2, pp. 301-310.
[32] Khodabakhshian A., Ghalehnovi M., Brito J., Asadi Shamsabadi E., (2018). Durability performance of structural concrete containing silica fume and marble industry waste powder. Journal of Cleaner Production, Vol. 170, No. 1, pp. 42-60.
]33[ رمضانیانپور ع. ا.، صمدیان م.، مهدیخانی م.، مودی ف.، (1390). بررسی آثار مواد پوزولانی بر دوام بتنهای خود متراکم. مجله علمی- پژوهشی عمران مدرس، دوره یازدهم، شماره 3.
[34] Guo Z., Jiang J., Zhang J., Kong X., Chen C., Lehman D. E., (2020). Mechanical and durability properties of sustainable SCC with recycled concrete aggregate and fly ash, slag and silica fume. Construction and Building Materials, Vol. 231, No. 1, pp. 133-141,
https://doi.org/10.1016/j.conbuildmat.2019.117115
[35] Ardalan R., Joshaghani A., Hootan R., (2017). Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume. Construction and Building Materials. Vol. 134, No. 3, pp. 116-122.
[36] Iris G. T., Belen G. F., Juan Luis P. O., Javier E. L., (2017). Prediction of self-compacting recycled concrete mechanical properties using vibrated recycled concrete experience. Construction and Building Materials, Vol. 131, No. 1, pp. 641-654.
]37[ رنجبر م.م.، مدندوست ر.، قانع ف.، عیسی پور س.، کریمی م.، (1393). ارزیابی خواص مهندسی بتن خودتراکم توانمند حاوی سیمان آمیخته. تحقیقات بتن، سال هفتم، شماره اول، بهار و تابستان 1393.
[38] Mohammadi Golafshani E., Ashour A., (2016). Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques. Automation in Construction 64 (2016) 7–19.
]39[ محمدپور نیکبین ا.، اسلامی م.، (1387). مروری بر خواص مکانیکی بتنهای خودتراکم معمولی و سبک. چهارمین کنگره ملی مهندسی عمران، دانشگاه تهران.
[40] ACI 318 – 95, Building Code Requirements for Structural Concrete.