بررسی مقاومت بتن حاوی میکرو سیلیس و خاکستر بادی با استفاده از شبکۀ عصبی مصنوعی

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 گروه عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد شبستر، شبستر، ایران

2 کارشناسی ارشد مهندسی زلزله، گروه مهندسی عمران، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران،

10.22124/jcr.2021.18016.1465

چکیده

امروزه روش‌های هوشمند و الهام گرفته از طبعیت در حل مسائل پیچیده طرفداران زیادی دارد. یکی از پرطرفدارترین و کاراترین این ساختارها، شبکه‌های عصبی مصنوعی هستند که قادرند یک رابطه کلی بین اطلاعات حجیم و پیچیده ناشی از آزمایشها و مثالهای تجربی به دست آورند. با گسترش روزافزون جمعیت و افزایش میزان ساخت و ساز و همچنین به دلیل محدود بودن منابع و مصالح مصرفی، تقاضا برای استفاده از مصالح جدید و مقاوم در برابر زلزله، در صنعت ساختمان افزایش پیدا کرده است. در این تحقیق، با در نظرگیری پارامترهای طرح اختلاط بتن به عنوان ورودی، از مدل‌سازی شبکۀ عصبی استاتیکی و سری زمانی برای پیش‌بینی مقاومت فشاری بتن استفاده خواهد شد. طرح‌های اختلاط با درصدهای مختلف خاکستر بادی و میکروسیلیس (%1، %5 ، %7 ، %10 ، % 12، %15، %18) و مخلوط میکروسیلیس و خاکستر بادی با درصدهای یکسان (%1 و %1 ، %3 و %3 ، %5 و %5 ، %7 و %7 ، %9 و %9 ، %10و %10 ) به عنوان درصدی از وزن سیمان، جهت بررسی عملکرد مدل‌های مورد استفاده، به کار گرفته شده است. بر اساس نتایج به‌دست آمده مدل‌های شبکۀ عصبی سری زمانی با 5 نورون عملکرد بسیار مناسبی برای پیش‌بینی مقاومت فشاری بتن با دقت و قابلیت اعتماد بیشتر، از خود نشان می‌دهد. همچنین جایگزینی میکروسیلیس به عنوان بخشی از سیمان در درصد‌های مختلف، عملکرد بهتری نسبت به خاکستر بادی و مخلوط این دو (سیلیس و خاکستر بادی) در افزایش مقاومت بتن نسبت به نمونۀ شاهد دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction Containing the Micro Silica and Fly ash on Concrete Strength Using Artificial Neural Network (ANN)

نویسندگان [English]

  • farhad pirmohammadi alishah 1
  • Ahmad Jahandideh Shendu 2
1 Department of Civil Engineering, Faculty of Engineering, Islamic Azad University, Shabestar Branch, Shabestar, Iran
2 Master of Earthquake Engineering,Department of Civil Engineering, Shabestar Branch, Islamic Azad University,Shabesta, Iran.
چکیده [English]

Nowadays, intelligent methods inspired from nature are implemented to resolve complex problems, there are very popular too. The most common one is artificial neural network; they are capable to collect huge amount of complex information through experiments and tests. With increasing population and a rise in construction and also due to limited resources and consumable materials, demand for hot rolled earthquake-resistant materials in the construction industry has increased. The purpose of this research, by considering concrete mix design parameters as input, the Static neural network and Time-series modeling to predict the compressive strength of concrete will be used. Mixing fly ash and silica fume various designs with different percentages (1%, 5%, 7%, 10%, 12%, 15%, 18%) and mixed with silica fume, fly ashes identical percentages (% 1% 1% 3 and 3%, 5% and 5%, 7% and 7%, 9% and 9%, 10% and 10%) as a percentage of the weight of cement, to evaluate the performance of the models in question were applied. It turned out that neural network models for predicting time series with 5 neurons performance concrete compressive strength is accurate and reliable.

کلیدواژه‌ها [English]

  • Compressive strength of concrete
  • Static neural networks
  • Time-series models
  • Micro silica
  • Fly ash
[1] Branjian, G. Forouhar, N. Ghasemi, M., Predicting the hardening properties of fiber reinforced concrete by neural network, Journal of Experimental Research in Civil Engineering, 2014.
[2] Sobhani, Z. Sobhani, C. Sheikhan. M., Artificial Neural Networks for Predicting Compressive Strength of Concrete: Error Propagation and Element Network, Concrete Research Journal, 2008.
[3] Saktheeswaran, N. Ganesan, K., "Compressive Strength of Concrete containing fly ash, Copper Slag, Silica fume and Fibres Prediction". International Journal of Engineering and Computer Science ISSN 2319-7242 Volume 3 Issue 2 February, Page No. 3891-3896, 2014.
[4] Dreyfus, G., “Neural Networks Methodology and Applications”, Springer-Verlag, Berlin Heidelberg , Germany, 2005.
[5] Heydari, A. Heydari, Sheikh, N., Application of neural network in predicting compressive strength of concrete containing additives, 10th Symposium on Advances in Science and Technology, 2015.
[6] Muthupriyaa, P. Subramanianb, K. Vishnuram, B. G., Prediction of Compressive  Strength and Durability of High Performance Concrete by Artificial Neural Networks، International Journal of Optimization in Civil Engineering، 2011.
[7] Gupta, S., Using Artificial Neural Network to Predict the Compressive Strength of Concrete containing Nano-silica، Civil Engineering and Architecture 1(3): 96-102, 2013.
[8] Chithra, S. Senthil Kumar, S. R. R., Chinnaraju, K. and et al., A comparative study on the compressive strength prediction models for high performance concrete containing nano silica and copper slag using regression analysis and Arti cial Neural Networks, Construction and Building Materials,114, pp. 528-535. 2016.
[9] Yazdani Bejarbneh, B. Yazdani Bejarbaneh, E. and et al., "Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems," Bulletin of Engineering Geology and The Environment, Vol. 75, No. 0, PP. 823 - 852, 29 November 2016.
[10] ASTM-C33., “Standard Spesification for Concrete Agregates.” ASTM International, 2003.
[11] Raisi, M. Mostofinejad, D. Ramazanian Pour, A. A., "Computer-Based Simulation Method for Predicting Packing Density of Aggregates," Advanced Powder Technology, Vol. 29, No. 0, PP. 386 - 398, January 05, 2018.
[12] National Iranian Standard 1-70, "Hollow Cement Block - Part I: Characteristics", Second Revision, Iranian Institute of Standards and Industrial Research, 2008.
[13] ASTM C-143., “Standard Test Method for Slump of Hydraulic-Cement Concrete.”  ASTM International, West Conshohocken, PA, USA, 2015.
[14] Ramezanianpor, A. A., Jafari Nadoshan, M. Peydaayesh, M. "effect of new composite cement containing volcanic ash and limestone on mechanical properties and salt scaling resistance of concrete," Journal of Materials in Civil Engineering, Vol. 25, No. 11, PP. 1587 - 1593, 01 November 2013.
[15] ACI 221R., Guide for Use of Normal Weight and Heavyweight Aggregate in Concrete, American Concrete Institute, Michigan, USA, 2015.
[16] Topcu, I. B., and Sarıdemir, M., "Prediction of Compressive Strength of Concrete Containing Fly Ash Using Artificial Neural Networks and Fuzzy Logic", Journal of Computational Materials Science, Vol.41, No.3, pp.305-311, 2008.
[17] Ramezanianpor, A. A., Samadian, M, Mahdi Khani, M., "Engineering properties and durability of self consolidating concretes(SCC) containing volcanic pumice ash," Asian Journal of Civil Engineering (building And Housing), Vol. 13, No. 4, PP. 521 - 530, 22 July 2012.
[18] Onuaguluchi, M. and Panesar, D. K., "Hardened properties of concrete mixtures containing precoated crumb rubber and silica fume," Journal of Cleaner Production, vol. 82, pp. 125-131, 2014.
[19] Fazel Zarandi, M. H., Turksen, I. B., Sobhani, J., Ramezanianpour. A, A, "Fuzzy Polynomial Neural Networks for Approximation of the Compressive Strength of Concrete.", Journal of Applied Soft Computing ,Vol. 8, pp. 488–498, 2008.
[20] Kadhum, M. M., and Hossein Agha, A, A., "Developing Artificial Neural Network and Multiple Linear Regression Models to Predict the Ultimate Load Carrying Capacity of Reactive Powder Concrete Coloumn", Journal of Civil and Environmental Research, Vol.8, No.1, 2016.
[21] Taheri Amiri, M., Ashrafian, A., Berenjian, J. 'Prediction of Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Multivariate Adaptive Regression Splines (MARS)', Concrete Research, 12(2), pp. 113-125, 2019.
[22] Delnavaz, A. 'Determination of Chloride Diffusion Coefficient in Light Weight Concrete based on Artificial Neural Network', Concrete Research, 9(2), pp. 55-63, 2017.
[23] Sobhani, J., sobhani, Z., Sheikhan, M. 'Neural networks for predicting the compressive strength of concrete: error back-propagation and recurrent elman networks', Concrete Research, 1(2), pp. 19-33, 2008.
[24] Pala, M., et al., Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Construction and Building Materials,21(2): p. 384-394, 2007.
[25] Nematinejad, M., eskandari, H., tadayon, G., Saghi, H. 'ANN Prediction of bond strength between steel rebar and concrete containing micro-silica, nano-silica and fibers', Concrete Research, 10(2), pp. 47-57. doi: 10.22124/jcr.2017.2415, 2017.
[26] Pooya Nejad, F. Mark, B. Jaksa, Kakhi, M. McCabe Bryan, A., “Prediction of pile settlement using artificial neural networks based on standard penetration test data,” Computers and Geotechnics, Vol. 36, pp.1125-1133, 2009..
[27] Matlab. Neural networks toolbox user guide; 2013.
[28] Dantas, A. T. A et al., “Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks “Construction and Building Materials, No. 38, pp. 717–722, 2013.