[1] Aldwaik M, Adeli H. (2014). Advances in optimization of highrise building structures. Structural and Multidisciplinary Optimization,50:899–919.
[2] Lee S, Bobby S, Spence SMJ, Tovar A, Kareem A. (2012). Shape and topology sculpting of tall buildings under aerodynamic loads. 20th analysis and computation specialty Conference, p. 323–34.
[3] Kareem A, Spence SMJ, Bernardini E, Bobby S, Wei D. (2018). Wind engineering: Using computational fluid dynamics to optimize tall building design. CTBUH Journal:38–43.
[4] Elshaer A, Bitsuamlak G, El Damatty A. (2016). Aerodynamic shape optimization of tall buildings using twisting and corner modifications. 8th International Colloquium on Bluff Body Aerodynamics and Applications, Northeastern University.
[5] Elshaer A, Bitsuamlak G, El Damatty A. (2017). Enhancing wind performance of tall buildings using corner aerodynamic optimization. Engineering Structures,136:133–48.
[6] Bobby S, Spence SMJ, Kareem A. (2016). Data-driven performance-based topology optimization of uncertain wind-excited tall buildings. Structural and Multidisciplinary Optimization,54:1379–402.
[7] Moon K-S, Connor JJ, Fernandez J. (2007). Diagrid structural systems for tall buildings: characteristics and methodology for preliminary design. The Structural Design of Tall and Special Buildings, 16:205–30. doi:10.1002/tal.311.
[8] Jama HH, Bambach MR, Nurick GN, Grzebieta RH, Zhao XL. (2009). Numerical modelling of square tubular steel beams subjected to transverse blast loads. Thin-Walled Structures,47:1523–34. doi:10.1016/j.tws.2009.06.004.
[9] Lacidogna G, Scaramozzino D, Carpinteri A. (2020). Influence of the geometrical shape on the structural behavior of diagrid tall buildings under lateral and torque actions. Developments in the Built Environment, 2:100009. doi:10.1016/j.dibe.2020.100009.
[10] Asadi E, Adeli H. Diagrid. (2017). An innovative, sustainable, and efficient structural system. The Structural Design of Tall and Special Buildings, 26:e1358. doi:10.1002/tal.1358.
[11] Al-Kodmany K, Ali M. (2016). An overview of structural and aesthetic developments in tall buildings using exterior bracing and diagrid systems. International Journal of High-Rise Buildings;5:271–91.
[12] Ali MM, Moon KS. (2018). Advances in structural systems for tall buildings: emerging developments for contemporary urban giants. Buildings;8:104.
[13] SivaPrasad GVS, Adiseshu S. (2013). A Comparative Study Of OMRF & SMRF Structural System for Tall & High Rise Buildings Subjected to Seismic Load. Int J Res Eng Techol,2:239–50.
[14] CTBUH. Council on Tall Buildings and Urban Habitat n.d. https://www.ctbuh.org/.
[15] Liu C, Li Q, Lu Z, Wu H. (2018). A review of the diagrid structural system for tall buildings. The Structural Design of Tall and Special Buildings,27:e1445. doi:10.1002/tal.1445.
[16] Mashhadiali N, Kheyroddin A. (2013). Proposing the hexagrid system as a new structural system for tall buildings. The Structural Design of Tall and Special Buildings, 22:1310–29. doi:10.1002/tal.1009.
[17] Zhao F, Zhang C. (2015). Diagonal arrangements of diagrid tube structures for preliminary design. The Structural Design of Tall and Special Buildings, 24:159–75. doi:10.1002/tal.1159.
[18] Montuori GM, Fadda M, Perrella G, Mele E. (2015). Hexagrid - hexagonal tube structures for tall buildings: patterns, modeling, and design. The Structural Design of Tall and Special Buildings, 24:912–40. doi:10.1002/tal.1218.
[19] Mashhadiali N, Kheyroddin A, Zahiri-Hashemi R. (2016). Dynamic Increase Factor for Investigation of Progressive Collapse Potential in Tall Tube-Type Buildings. Journal of Performance of Constructed Facilities, 30:04016050. doi:10.1061/(ASCE)CF.1943-5509.0000905.
[20] Liu C, Ma K. (2017), Calculation model of the lateral stiffness of high-rise diagrid tube structures based on the modular method. The Structural Design of Tall and Special Buildings, 26:e1333. doi:10.1002/tal.1333.
[21] Tomei V, Imbimbo M, Mele E. (2018). Optimization of structural patterns for tall buildings: The case of diagrid. Engineering Structures, 171:280–97. doi:10.1016/j.engstruct.2018.05.043.
[22] Kheyroddin A, Mashhadiali N. (2018). Response modification factor of concentrically braced frames with hexagonal pattern of braces. Journal of Constructional Steel Research, 148:658–68. doi:10.1016/j.jcsr.2018.06.024.
[23] FEMA P695. Quantification of Building Seismic Performance Factors, FEMA P695. Federal Emergency Management Agency Washington, District of Columbia; 2009.
[24] Mashhadiali N, Kheyroddin A. (2018). Seismic performance of concentrically braced frame with hexagonal pattern of braces to mitigate soft story behavior. Engineering Structures, 175:27–40. doi:10.1016/j.engstruct.2018.08.036.
[25] Mashhadiali N, Kheyroddin A. (2019). Quantification of the seismic performance factors of steel hexagrid structures. Journal of Constructional Steel Research, 157:82–92. doi:10.1016/j.jcsr.2019.02.013.
[26] Ardekani A, Dabbaghchian I, Alaghmandan M, Golabchi M, Hosseini SM, Mirghaderi SR. (2020). Parametric design of diagrid tall buildings regarding structural efficiency. Architectural Science Review, 63:87–102. doi:10.1080/00038628.2019.1704395.
[27] Reiser J, Umemoto N, Ocampo J. (2010). Case Study: O-14 Folded Exoskeleton. CTBUH Journal,14–9.
[28] Aramesh S, Kheyroddin A. (2020). Evaluation of Shear Lag Index in High-Rise RC Buildings having Exo-Skeleton Structural System. Iranian Journal of Science and Technolog, Transactions of Civil Engineering, DOI https://doi.org/10.1007/s40996-020-00469-8.
[29] SAP2000, "Analysis Reference Manual", Version 8, CSI, Computer & Structures, Inc., Berkeley, USA, 2002.
]30[ مقررات ملی ساختمان ایران. مبحث 6 "بارهای وارد بر ساختمان"، ویرایش چهارم، 1392.
[31] "IBC 2006, International Building Code 2006", Section 1613 Earthquake Loads.
[32] H. Emre Ilgin and M. Halis Guvel; Neville Mathias; "The Role of Aerodynamic Modifications in The Form of Tall Buildings Against Wind Excitation", PP:17-25 , METU JFA 2/2007.
[33] مرکز تحقیقات ساختمان و مسکن، "طراحی ساختمانها در برابر زلزله"، استاندارد 2800، ویرایش چهارم، 1394.