[2] Singh, N., Kumar, P., & Goyal, P. Reviewing the behavior of high volume fly ash based self-compacting concrete. Journal of Building Engineering, 100882. (2019).
[3] Li, P. P., Brouwers, H. J. H., Chen, W., & Yu, Q. (2020). Optimization and characterization of high-volume limestone powder in sustainable ultra-high performance concrete. Construction and Building Materials, 242, 118112.
[5] Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., & Ou, Z. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659-672. (2018).
https://doi.org/10.1016/j.conbuildmat.2018.06.075
[6] Ye, G., Liu, X., De Schutter, G., Poppe, A. M., & Taerwe, L. Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cement and Concrete Composites, 29(2), 94-102. (2007).
[7] Tennich, M., Ouezdou, M. B., & Kallel, A. Thermal effect of marble and tile fillers on self-compacting concrete behavior in the fresh state and at early age. Journal of Building Engineering, 20, 1-7.(2018).
https://doi.org/10.1016/j.jobe.2018.06.015
[8] Zhutovsky, S., & Kovler, K. Influence of water to cement ratio on the efficiency of internal curing of high-performance concrete. Construction and Building Materials, 144, 311-316. (2017).
[9] Poole, T. S. Revision of test methods and specifications for controlling heat of hydration in hydraulic cement (No. PCA R&D Serial No. 2007).
[10] Ballim, Y., & Graham, P. C. The effects of supplementary cementing materials in modifying the heat of hydration of concrete. Materials and Structures, 42(6), 803-811. (2009).
https://doi.org/10.1617/s11527-008-9425-3
[11] de Matos, P. R., Junckes, R., Graeff, E., & Prudêncio Jr, L. R. Effectiveness of fly ash in reducing the hydration heat release of mass concrete. Journal of Building Engineering, 101063.(2019).
https://doi.org/10.1016/j.jobe.2019.101063
[12] Kjellsen, K. O., & Lagerblad, B. Microstructure of tricalcium silicate and Portland cement systems at middle periods of hydration-development of Hadley grains. Cement and Concrete Research, 37(1), 13-20. (2007).
[13] Nehdi, M. L. Only tall things cast shadows: Opportunities, challenges and research needs of self-consolidating concrete in super-tall buildings. Construction and Building Materials, 48, 80-90. (2013).
https://doi.org/10.1016/j.conbuildmat.2013.06.051
[14] Tragardh, J. Microstructural features and related properties of self-compacting concrete. In Self-Compacting Concrete: Proceedings of the First International RILEM Symposium held in Stockholm. 175-186. (1999). doi:10.1016/j.proeng.2017.02.122
[15] نیلی, محمود, صالحی, امیرمسعود. تاثیر عمل آوری حرارتی هسته و سطح ستون های حجیم بر مقاومت درازمدت بتن با مقاومت زیاد,
مهندسی عمران امیرکبیر. (1389).
[16] Nili, M., & Salehi, A. M. Assessing the effectiveness of pozzolans in massive high-strength concrete. Construction and Building Materials, 24(11), 2108-2116. (2010).
[17] Mostofinejad, D., & Nozhati, M. Prediction of the modulus of elasticity of high strength concrete. Iranian Journal of Science & Technology, Transaction B, Engineering, 29(B3), 311-321. (2005). https://doi.org/10.22099/ijstc.2013.785
[19] نیلی, محمود, یزدان دوست همدانی, علیرضا. (1397). مدل سازی حرارتی ستونهای حجیم بتنی در شرایط آب و هوایی سرد و گرم, تحقیقات بتن.
Doi: 10.22124/jcr.2018.4651.1172: 18-5. 11(3)
[20] Amin, M. N., Kim, J. S., Lee, Y., & Kim, J. K. Simulation of the thermal stress in mass concrete using a thermal stress measuring device. Cement and Concrete Research, 39(3), 154-164. (2009).
[21] ASTM, C33. Standard specification for concrete aggregates. Philadelphia, PA: American Society for Testing and Materials. (2003).
[22] BIBM, C., & ERMCO, E. EFNARC The European guidelines for self-compacting concrete. Specification, Production and Use. (2005)
[23] Vilanova, A., Fernandez-Gomez, J., & Landsberger, G. A. (2011). Evaluation of the mechanical properties of self compacting concrete using current estimating models: Estimating the modulus of elasticity, tensile strength, and modulus of rupture of self compacting concrete. Construction and Building Materials, 25(8), 3417-3426.
https://doi.org/10.1016/j.conbuildmat.2011.03.033
[24] Felekoğlu, B., Türkel, S., & Baradan, B. (2007). Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42(4), 1795-1802.
[25] Habibi, A., & Ghomashi, J. (2018). Development of an optimum mix design method for self-compacting concrete based on experimental results. Construction and Building Materials, 168, 113-123.
[26] ASTM, C469. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. Annual book of ASTM standards, 4. (2002).
[27] ACI Committee 318-95, Building code requirements for reinforced concrete, Metric System, American Concrete Institute, Detroit. (1995).
[28] ACI Committee 363-92, State-of-the-art report on high-strength concrete. ACI Manual of Concrete Practice, Part 3. (1998).
[29] Poppe, A. M., & De Schutter, G. (2005). Cement hydration in the presence of high filler contents. Cement and Concrete Research, 35(12), 2290-2299.
[30] Klemczak, B., Batog, M., Pilch, M., & Żmij, A. (2017). Analysis of cracking risk in early age mass concrete with different aggregate types. Procedia engineering, 193, 234-241.