مطالعه رفتاری خصوصیات مکانیکی و ریزساختار بتن حاوی سرباره فولاد در معرض دمای زیاد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده فنی، دانشگاه هرمزگان. استادیار دانشکده فنی مرودشت، دانشگاه فنی و حرفه‌ای

2 دانشجوی کارشناسی ارشد مهندسی عمران، دانشگاه آزاد اسلامی واحد بندرعباس

3 دانشجوی دکتری مهندسی عمران، دانشگاه خوارزمی

چکیده

حرارت چه در حالت گذرا چه در حالت پایدار موجب تغییر در خصوصیات فیزیکی و شیمیایی بتن می‌شود. از سوی دیگر استفاده از سرباره به همراه سیمان پرتلند بر توسعه ریزساختار بتن تأثیرگذار است.. محصولات اصلی فرآیند هیدراتاسیون خمیر سیمان و سرباره که نقش مهمی در افزایش مقاومت بتن دارد، نانوساختارهای هیدرات سیلیکات کلسیم (C-S-H) و هیدرات آلومینوفریت کلسیم (C-A-Fe-H) است. بر این اساس به‌منظور درک عمیق‌تر از تغییر رفتار نانوساختارهای C-S-H و C-A-Fe-H براثر اعمال درجه حرارت‌های زیاد، بتن حاوی درصدهای مختلف سرباره فولاد در این مقاله مورد بررسی قرارگرفته است. در این راستا حدود 150 نمونه مکعبی بتن با جایگزینی صفر، 5%، 10%، 15% و 20% سرباره فولاد به سیمان پرتلند به مدت 28 روز در حمام رطوبت عمل‌آوری شده است. سپس همه آزمونه‌ها به مدت 1 ساعت در دماهای 25 تا 800 درجه سلسیوس قرارگرفته است. درصد تغییرات وزنی، مقاومت فشاری و رفتار ترک‌خوردگی در تمام آزمونه‌ها موردبررسی قرارگرفته است. برای ارزیابی رفتار ریزساختاری آزمونه‌ها در دماهای مختلف از تصاویر میکروسکوپ الکترونیکی روبشی (SEM) و طیف‌سنجی پراکندگی انرژی پرتوایکس (EDS) استفاده شد. بر اساس نتایج پژوهش حاضر ماهیت رفتار آزمونه‌های بتنی وابسته به تغییرات نانوساختارهای C-S-H و C-A-Fe-H تحت دمای زیاد است. مقاومت فشاری نمونه‌های حاوی 5 تا 15 درصد سرباره فولاد نسبت به نمونه بتن معمولی افزایش داشتند. دلیل این افزایش بر اساس تصاویر SEM تراکم بیشتر نانوساختارهای C-S-H و C-A-Fe-H و هیدروکسید آهن FeO(OH) است.

کلیدواژه‌ها


عنوان مقاله [English]

Studying the Mechanical Properties and Microstructure of Concrete Containing Steel Slang exposed to High Temperature

نویسندگان [English]

  • mohammad amiri 1
  • Afshin . Vatanpour Aghjeh Mashhad 2
  • Marziyeh Aryanpour 2
  • Sedigheh Ghasemi 3
1 Assistant Professor, University of Hormozgan, Faculty of Engineering, Bandar Abbas, Iran
2 Master Student, Islamic Azad University of Bandar Abbas, Faculty of Engineering
3 PhD Student, Kharazmi University, Faculty of Engineering, Tehran, Iran
چکیده [English]

Heat, both in transient and steady state, changes the physical and chemical properties of concrete. In addition, the use of slag with Portland cement is very effective on development of concrete microstructure. The main products of hydration process are cement paste and slag, which plays important role in increasing concrete strength, C-S-H and C-A-Fe-H microstructures. Based on this, this paper has focused on the concrete containing varying degrees of steel slag in order to get a deeper perception of the changing behavior of C-S-H and C-A-Fe-H due to being exposed to high temperature. In this regard, 150 cubic samples of concrete with zero, 5%, 10%, 15% and 20% replacement of steel slag to Portland cement were treated for 28 days in a moisture bath. Then, all samples were exposed for 1 hour to 25 to 800 ºC. The percentage of weight change, compressive strength and cracking behavior of samples were investigated. Furthermore, in order to evaluate the microstructural behavior of test samples in different temperatures, SEM photos and EDS were used. Based on the results, the behavior of concrete samples depends on the variations of C-S-H and C-A-Fe-H microstructures under high temperature. The compressive strength of samples containing 5 to 15% steel slag increased as compared to conventional concrete sample. Based on SEM photos, the reason for this increase is higher density of C-S-H and C-A-Fe-H microstructures and FeO(OH).

کلیدواژه‌ها [English]

  • Steel Slang
  • High Temperature
  • Compressive Strength
  • SEM
[1] Khaliq, W., Mechanical and physical response of recycled aggregates high-strength concrete at elevated temperatures. Fire safety journal, 2018. 96: p. 203-214.
[2] Amiri, M. and M. Aryanpour, The effect of high temperatures on concrete performance with a view to the changes in the C-S-H nanostructure. Concrete Research, 2019. 12(4): p. 69-80.
[3] Park, S.M., J.G. Jang, N. Lee, and H.-K. Lee, Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Cement and Concrete Research, 2016. 89: p. 72-79.
[5] Wang, X., W. Ni, J. Li, S. Zhang, M. Hitch, and R. Pascual, Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms. Cement and Concrete Research, 2019. 125: p. 105893.
[6] Tian, Q., S. Nakama, and K. Sasaki, Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Science of the total environment, 2019. 687: p. 1127-1137.
[7] Gartner, E., J. Young, D. Damidot, and I. Jawed, Hydration of Portland cement. Structure and performance of cements, 2002. 2: p. 57-113.
[8] Carlson, E.T., Action of water on calcium aluminoferrites. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 1964. 68(5): p. 453.
[9] Carlson, E.T., Some properties of the calcium aluminoferrite hydrates. Vol. 6. 1966: US Government Printing Office.
[10] Tüfekçi, M., A. Demirbaş, and H. Genc, Evaluation of steel furnace slags as cement additives. Cement and Concrete Research, 1997. 27(11): p. 1713-1717.
[11] Liu, J. and D. Wang, Influence of steel slag-silica fume composite mineral admixture on the properties of concrete. Powder technology, 2017. 320: p. 230-238.
[12] Wang, S., G. Zhang, B. Wang, and M. Wu, Mechanical strengths and durability properties of pervious concretes with blended steel slag and natural aggregate. Journal of Cleaner Production, 2020. 271: p. 122590.
[13] Subathra Devi, V., M. Madhan Kumar, N. Iswarya, and B.K. Gnanavel, Durability of Steel Slag Concrete under Various Exposure Conditions. Materials Today: Proceedings, 2020. 22: p. 2764-2771.
[14] Houaria, M.B.A., M. Abdelkader, C. Marta, and K. Abdelhafid, Comparison between the permeability water and gas permeability of the concretes under the effect of temperature. Energy Procedia, 2017. 139: p. 725-730.
[15] Maanser, A., A. Benouis, and N. Ferhoune, Effect of high temperature on strength and mass loss of admixtured concretes. Construction and Building Materials, 2018. 166: p. 916-921.
[16] Berenjian, J., N. Tila, M.J. Taheri Amiri, and A. Ashrafian, Investigating the Effect of High Temperatures on Long-term Compressive Strength of Self-Compacting Concrete Containing Powdery Binary Admixtures. Concrete Research, 2018. 11(1): p. 119-128.
[17] Amiri, M. and M. Aryanpour, Assessment of the Geopolymer Concrete Performance Compared to Conventional Concrete at High Temperatures from Microstructural Perspective. Modares Civil Engineering journal, 2020. article in press.
[18]  ASTM, American Society for Testing and Materials. 2004.
[19] EN, B., 12390-3, Testing hardened concrete-Part 3: Compressive strength of test specimens. British Standards Institution, 2002.
[20] Taylor, P.C., S.H. Kosmatka, and G.F. Voigt, Integrated materials and construction practices for concrete pavement: A state-of-the-practice manual. 2006.
[21] Kriskova, L., Y. Pontikes, Ö. Cizer, G. Mertens, W. Veulemans, D. Geysen, P.T. Jones, L. Vandewalle, K. Van Balen, and B. Blanpain, Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cement and Concrete Research, 2012. 42(6): p. 778-788.
[22] Tan, H., M. Li, J. Ren, X. Deng, X. Zhang, K. Nie, J. Zhang, and Z. Yu, Effect of aluminum sulfate on the hydration of tricalcium silicate. Construction and Building Materials, 2019. 205: p424-414
Arioz, O., Effects of elevated temperatures on properties of concrete. Fire safety journal, 2007. 42(8): p. 516-522.
[23] Ouypornprasert, W., N. Traitruengtatsana, and K. Kamollertvara. Optimum Partial Replacement of Cement by Rice Husk Ash and Fly Ash Based on Complete Consumption of Calcium Hydroxide. 2018. Cham: Springer International Publishing.
[24] Vieira, J., J. Correia, and J. De Brito, Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates. Cement and Concrete Research, 2011. 41(5): p. 533-541.
[25] Behnood, A. and M. Ghandehari, Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Safety Journal, 2009. 44(8): p. 1015-1022.
[26] Castillo, C., Effect of transient high temperature on high-strength concrete. 1987.
[27] Ramachandran, V.S. and R.F. Feldman, Concrete science, in Concrete Admixtures Handbook. 1996, Elsevier. p. 1-66.
[28] Tshimanga, M.K., Influence des paramètres de formulation et microstructuraux sur le comportement à haute température des bétons. Revue Européenne de Génie Civil, 2006. 10(8): p. 1011-1011.
[29] Mydin, M.O., N.M. Zamzani, and A.A. Ghani, Experimental data on compressive and flexural strengths of coir fibre reinforced foamed concrete at elevated temperatures. Data in brief, 2019. 25: p. 104320.
[30] Short, N., J. Purkiss, and S. Guise, Assessment of fire damaged concrete using colour image analysis. Construction and building materials, 2001. 15(1): p. 9-15.