The effect of limestone powder on mechanical properties of Reactive Powder Concrete (RPC)

Document Type : p

Authors

Associate Professor, University of Zanjan, Civil Engineering Department

10.22124/jcr.2021.17026.1447

Abstract

Reactive powder concrete (RPC) is a type of ultra-high performance concrete (UHPC) with a high cementitious materials content. Coarse aggregates are removed in RPCs and ultra-fine powder materials such as silica sand, silica fume and pozzolans are used to provide a homogeneous concrete with excellent microstructure. In this study, the effect of limestone powder on the physical and mechanical properties of reactive powder concrete has been investigated. Limestone powder was replaced with different percentages of silica sand, and compressive strength, flexural strength, shrinkage, and water absorption percentage of samples were measured at 7, 28, and 90 days of age. Experimental results showed that the 28-day compressive strength of this concrete was greater than 100 MPa and the physical and mechanical properties of the concrete were improved by increasing the amount of stone powder The mixture containing 54% replacement of limestone powder had the highest compressive strength and the lowest water absorption. Also, replacing silica sand with limestone powder increases shrinkage due to drying and reduces the Autogenous shrinkage of reactive powder concrete.

Keywords

Main Subjects


[1] M. Yudenfreund, J. Skalny, R. S. Mikhail, and S. Brunauer, “Hardened portland cement pastes of low porosity II. Exploratory studies. Dimensional changes,” Cem. Concr. Res., vol. 2, no. 3, pp. 331–348, May 1972.
[2] D. M. Roy, G. R. Gouda, and A. Bobrowsky, “Very high strength cement pastes prepared by hot pressing and other high pressure techniques,” Cem. Concr. Res., vol. 2, no. 3, pp. 349–366, May 1972.
[3] P. Richard and M. Cheyrezy, “Composition of reactive powder concretes,” Cem. Concr. Res., vol. 25, no. 7, pp. 1501–1511, Oct. 1995.
[4] M.-G. Lee, Y.-C. Wang, and C.-T. Chiu, “A preliminary study of reactive powder concrete as a new repair material,” Constr. Build. Mater., vol. 21, no. 1, pp. 182–189, Jan. 2007.
[5] A. Sadrekarimi, “Development of a Light Weight Reactive Powder Concrete,” J. Adv. Concr. Technol., vol. 2, no. 3, pp. 409–417, 2004.
[6] O. A. Mayhoub, E.-S. A. R. Nasr, Y. A. Ali, and M. Kohail, “The influence of ingredients on the properties of reactive powder concrete: A review,” Ain Shams Eng. J., Sep. 2020.
]7[ ح. معصومی، س. نزهتی، ح. معصومی و ف. نجاتی، “بررسی ویژگی‌ها و مزایای بتن پودری واکنش زا,” ششمین همایش فرامنطقه ای پیشرفت‌های نوین در علوم مهندسی. موسسه آموزش عالی آیندگان، تنکابن، 1392.
[8] H. Yazici, H. Yiǧiter, A. Ş. Karabulut, and B. Baradan, “Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete,” Fuel, vol. 87, no. 12, pp. 2401–2407, 2008.
[9] H. Yazici, M. Y. Yardimci, S. Aydin, and A. Ş. Karabulut, “Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes,” Constr. Build. Mater., vol. 23, no. 3, pp. 1223–1231, 2009.
[10] M. Vigneshwari, K. Arunachalam, and A. Angayarkanni, “Replacement of silica fume with thermally treated rice husk ash in Reactive Powder Concrete,” J. Clean. Prod., vol. 188, pp. 264–277, Jul. 2018.
]11[ ج. چاخرلو و ب. شروانی تبار، "استفاده از پودر سنگ آهک به عنوان جایگزین بخشی از ماسه سیلیسی در بتن پودری واکنش پذیر"، نهمین کنفرانس ملی بتن. انجمن بتن ایران، تهران، 1396.
[12] J. H. Liu, S. M. Song, Y. M. Sun, and L. Wang, “Influence of Ultrafine Limestone Powder on the Performance of High Volume Mineral Admixture Reactive Powder Concrete,” Adv. Mater. Res., vol. 152–153, pp. 1583–1586, Oct. 2010.
[13] M. S. Savadkoohi and M. Reisi, “Environmental protection based sustainable development by utilization of granite waste in Reactive Powder Concrete,” J. Clean. Prod., vol. 266, p. 121973, Sep. 2020.
[14] S. Grzeszczyk and G. Janus, “Reactive powder concrete with lightweight aggregates,” Constr. Build. Mater., vol. 263, p. 120164, Dec. 2020.
[15] L. Xiaoying, L. Jun, L. Zhongyuan, H. Li, and C. Jiakun, “Preparation and properties of reactive powder concrete by using titanium slag aggregates,” Constr. Build. Mater., vol. 234, p. 117342, Feb. 2020.
]16[ ع. حبیبی، "خصوصیات مکانیکی بتن با پودر سنگ آهک"، تحقیقات بتن، شماره دوم، ص. 84-71، 2009.
]17[ س. هاشمی، م. دشتی رحمت آبادی و س. فائزی، "بتن پودری واکنش پذیر، از تئوری تا تولید"، چهارمین کنفرانس ملی مصالح و سازه های نوین در مهندسی عمران. دانشگاه یاسوج، یاسوج، 1394.
[18] K. Wille, A. E. Naaman, and G. J. Parra-Montesinos, “Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way.,” ACI Mater. J., vol. 108, no. 1, 2011.
[19] S. Ahmad, A. Zubair, and M. Maslehuddin, “Effect of key mixture parameters on flow and mechanical properties of reactive powder concrete,” Constr. Build. Mater., vol. 99, pp. 73–81, Nov. 2015.
[20] C. M. Tam, V. W. Y. Tam, and K. M. Ng, “Optimal conditions for producing reactive powder concrete,” Mag. Concr. Res., vol. 62, no. 10, pp. 701–716, Oct. 2010.
]21[ م. رئیسی و س. ح. موسوی فرد، "ارزیابی تأثیر پارامترهای کلیدی طرح اختلاط بتن پودری واکنشی (RPC) بر مقاومت فشاری"، نشریه مهندسی عمران امیرکبیر، 2019.
[22] Z. Yunsheng, S. Wei, L. Sifeng, J. Chujie, and L. Jianzhong, “Preparation of C200 green reactive powder concrete and its static–dynamic behaviors,” Cem. Concr. Compos., vol. 30, no. 9, pp. 831–838, Oct. 2008.
[23] A. C230M-14, “Standard Specification for Flow Table for Use in Tests of Hydraulic Cement,” ASTM Int., 2014.
[24] A. C109M, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens),” ASTM, 2013.
[25] A. C348-02, “Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars,” ASTM Int., 2002.
[26] A. C948-81(2016), “Standard Test Method for Dry and Wet Bulk Density, Water Absorption, and Apparent Porosity of Thin Sections of Glass-Fiber Reinforced Concrete,” ASTM Int., 2016.
]27[ م. شکرچی‌زاده، س. عسگرپور، س. خدبخش رشاد و ا. کامل، "جمع شدگی بتن های سبک و روش‌های اندازه گیری آن در استانداردها و ادبیات فنی"، پنجمین کنفرانس ملی بتن ایران. انجمن بتن ایران، تهران، 1392.
[28] A. C. / C157M, “Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and,” ASTM, pp. 1–7, 2009.
]29[ پ. ایتسین، س. مایندس، "بتن و توسعه پایدار"، ح. رحمانی، انتشارات دانشگاه زنجان، 1397.