[1] T. Wilberforce, A. Baroutaji, B. Soudan, A.H. Al-Alami, A.G. Olabi, Outlook of carbon capture technology and challenges, Sci. Total Environ. 657 (2019) 56–72, https://doi.org/10.1016/j.scitotenv.2018.11.424.
[2] M. Mastali, Z. Abdollahnejad, F. Pacheco-Torgal, Carbon dioxide sequestration on fly ash/waste glassalkali-based mortars with recycled aggregates: compressive strength, hydration products, carbon footprint, and cost analysis, in: F. PachecoTorgal, C. Shi, A. Palomo Sanchez (Eds.), Carbon Dioxide Sequestration Cem. Constr. Mater. first ed., Woodhead Publishing, 2018, pp. 299–348, ,
https://doi. org/10.1016/B978-0-08-102444-7.00013-7.
[3] S. Drissi, T.-C. Ling, K.H. Mo, A. Eddhahak, A review of microencapsulated and composite phase change materials: alteration of strength and thermal properties of cement-based materials, Renew. Sustain. Energy Rev. 110 (2019) 467–484, https://doi.org/10.1016/j.rser.2019.04.072.
[4] WBCSD, Getting the Numbers Right Project: Reporting CO2, World Business Council for Sustainable Development, 2016, https://www.wbcsdcement.org/GNR2016/ , Accessed date: 19 June 2019.
[5] Y. Meng, T.-C. Ling, K.H. Mo, W. Tian, Enhancement of high temperature performance of cement blocks via CO2 curing, Sci. Total Environ. 671 (2019) 827–837, https://doi.org/10.1016/j.scitotenv.2019.03.411.
[6] V.V.P. Kumar, D.R. Prasad, Influence of supplementary cementitious materials on strength and durability characteristics of concrete, Adv. Concr. Constr. 7 (2019) 75–85, https://doi.org/10.12989/ACC.2019.7.2.075.
[7] S.K. Kaliyavaradhan, T.-C. Ling, Potential of CO2 sequestration through construction and demolition (C&D) waste—an overview, J. CO2 Util. 20 (2017) 234–242, https://doi.org/10.1016/j.jcou.2017.05.014.
[8] M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production—present and future, Cement Concr. Res. 41 (2011) 642–650, https://doi. org/10.1016/j.cemconres.2011.03.019.
[9] T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen, Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar, J. Clean. Prod. 187 (2018) 171–179, https://doi.org/10.1016/J. JCLEPRO.2018.03.202.
[10] D.K. Ashish, S.K. Verma, Determination of optimum mixture design method for self compacting concrete: validation of method with experimental results, Constr. Build. Mater. 217 (2019) 664–678, https://doi.org/10.1016/j.conbuildmat.2019.05.034.
[11] D.K. Ashish, Concrete made with waste marble powder and supplementary cementitious material for sustainable development, J. Clean. Prod. 211 (2019) 716–729, https://doi.org/10.1016/j.jclepro.2018.11.245.
[12] D.K. Ashish, S.K. Verma, Cementing Efficiency of Flash and Rotary-Calcined Metakaolin in Concrete, J. Mater. Civ. Eng. (2019), https://doi.org/10.1061/ (ASCE)MT.1943-5533.0002953 In press.
[13] L.M. Federico, Waste Glass-A Supplementary Cementitious Material, McMaster University, Hamilton, Ontario, Canada, 2013https://macsphere.mcmaster.ca/ bitstream/11375/13455/1/fulltext.pdf.
[14] M.C.G. Juenger, R. Siddique, Recent advances in understanding the role of supplementary cementitious materials in concrete, Cement Concr. Res. 78 (2015) 71–80, https://doi.org/10.1016/j.cemconres.2015.03.018.
[15] R. Snellings, Assessing, understanding and unlocking supplementary cementitious materials, RILEM Tech. Lett. 1 (2016), https://doi.org/10.21809/rilemtechlett. 2016.12 55–55.
[16] H. Toutanji, N. Delatte, S. Aggoun, R. Duval, A. Danson, Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete, Cement Concr. Res. 34 (2004) 311–319, https://doi.org/10.1016/J. CEMCONRES.2003.08.017.
[17] R. Siddique, Utilization of silica fume in concrete: review of hardened properties, Resour. Conserv. Recycl. 55 (2011) 923–932, https://doi.org/10.1016/J. RESCONREC.2011.06.012.
[18] M. Djezzar, K. Ezziane, A. Kadri, E.-H. Kadri, Modeling of ultimate value and kinetic of compressive strength and hydration heat of concrete made with different replacement rates of silica fume and w/b ratios, Adv. Concr. Constr. 6 (2018) 297–309, https://doi.org/10.12989/ACC.2018.6.3.297.
[19] M. Sarıdemir, Effect of silica fume and ground pumice on compressive strength and modulus of elasticity of high strength concrete, Constr. Build. Mater. 49 (2013) 484–489, https://doi.org/10.1016/J.CONBUILDMAT.2013.08.091.
[20] Zahra Abdollahnejad, Mohammad Kheradmand, F. Pacheco-Torgal, Short-term compressive strength of fly ash and waste glass alkali-activated cement-based binder mortars with two biopolymers, J. Mater. Civ. Eng. 29 (2017) 4017045, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001920.
[21] Z. Abdollahnejad, A. Dalvand, M. Mastali, T. Luukkonen, M. Illikainen, Effects of waste ground glass and lime on the crystallinity and strength of geopolymers, Mag. Concr. Res. (2018) 1–38, https://doi.org/10.1680/jmacr.18.00300.
[22] Y. Jani, W. Hogland, Waste glass in the production of cement and concrete – a review, J. Environ. Chem. Eng. 2 (2014) 1767–1775, https://doi.org/10.1016/j. jece.2014.03.016.
[23] K.A. Zaidi, S. Ram, M.K. Gautam, Utilisation of glass powder in high strength copper slag concrete, Adv. Concr. Constr. 5 (2017) 65–74, https://doi.org/10.12989/ACC. 2017.5.1.065.
[24] G. Chen, H. Lee, K.L. Young, P.L. Yue, A. Wong, T. Tao, K.K. Choi, Glass recycling in cement production—an innovative approach, Waste Manag. 22 (2002) 747–753, https://doi.org/10.1016/S0956-053X(02)00047-8.
[25] C. Shi, K. Zheng, A review on the use of waste glasses in the production of cement and concrete, Resour. Conserv. Recycl. 52 (2007) 234–247, https://doi.org/10. 1016/j.resconrec.2007.01.013.
[26] R.C. Lewis, N. De Belie, M. Soutsos, E. Gruyaert (Eds.), Silica Fume BT – Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-Of-The-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4, Springer International Publishing, Cham, 2018, pp. 99–121, , https://doi.org/10.1007/978-3-319-70606-1_3.
[27] K.C. Williams, P. Partheeban, An experimental and numerical approach in strength prediction of reclaimed rubber concrete, Adv. Concr. Constr. 6 (2018) 87–102, https://doi.org/10.12989/ACC.2018.6.1.087.
[28] A. Imam, V. Kumar, V. Srivastava, Review study towards effect of Silica Fume on the fresh and hardened properties of concrete, Adv. Concr. Constr. 6 (2018) 145–157, https://doi.org/10.12989/ACC.2018.6.2.145.
[29] Y. Yue, J.J. Wang, Y. Bai, Tracing the status of silica fume in cementitious materials with Raman microscope, Constr. Build. Mater. 159 (2018) 610–616, https://doi.org/10.1016/J.CONBUILDMAT.2017.11.015.
[30] M. Mazloom, A. Allahabadi, M. Karamloo, Effect of silica fume and polyepoxidebased polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC, Adv. Concr. Constr. 5 (2017) 587–911, https://doi.org/10.12989/ ACC.2017.5.6.587.
[31] S. Ahmad, A. Umar, A. Masood, M. Nayeem, Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume, Adv. Concr. Constr. 7 (2019) 31–37, https://doi.org/10.12989/ACC.2019.7.1.031.
[32] M. Mastali, A. Dalvand, The impact resistance and mechanical properties of fiber reinforced self-compacting concrete (SCC) containing nano-SiO2 and silica fume, Eur. J. Environ. Civ. Eng. 22 (2018) 1–27, https://doi.org/10.1080/19648189. 2016.1177604.
[33] B. Viswanath, S. Kim, P. de Voogt (Ed.), Influence of Nanotoxicity on Human Health and Environment: the Alternative Strategies BT - Reviews of Environmental Contamination and Toxicology, Springer International Publishing, Cham, 2017, pp. 61–104, , https://doi.org/10.1007/398_2016_12.
[34] P.H.M. Hoet, I. Brüske-Hohlfeld, O. V Salata, Nanoparticles - known and unknown health risks, J. Nanobiotechnol. 2 (2004) 12, https://doi.org/10.1186/1477-3155- 2-12.
[35] M.I. Khan, R. Siddique, Utilization of silica fume in concrete: review of durability properties, Resour. Conserv. Recycl. 57 (2011) 30–35, https://doi.org/10.1016/J.RESCONREC.2011.09.016.
[36] R. Siddique, N. Chahal, Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar, Resour. Conserv. Recycl. 55 (2011) 739–744, https://doi.org/10.1016/J.RESCONREC.2011.03.004.
[37] S. Yaseri, G. Hajiaghaei, F. Mohammadi, M. Mahdikhani, R. Farokhzad, The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste, Constr. Build. Mater. 157 (2017) 534–545, https://doi.org/10.1016/J.CONBUILDMAT.2017.09.102.
[38] P.-C. Aïtcin, 4 - supplementary cementitious materials and blended cements, in: P.C. Aïtcin, R.J. Flatt (Eds.), Sci. Technol. Concr. Admixtures, Woodhead Publishing, 2016, pp. 53–73, , https://doi.org/10.1016/B978-0-08-100693-1.00004-7.
[39] FHWA, User Guidelines for Waste and Byproduct Materials in Pavement Construction, (2016) Washington, DC, USA https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/intro.cfm , Accessed date: 25 April 2019.
[40] R.V. Silva, J. de Brito, C.Q. Lye, R.K. Dhir, The role of glass waste in the production of ceramic-based products and other applications: a review, J. Clean. Prod. 167 (2017) 346–364, https://doi.org/10.1016/J.JCLEPRO.2017.08.185.
[41] P. Turgut, E.S. Yahlizade, Research into concrete blocks with waste glass, Int. J. Civ. Environ. Eng. 3 (2009) 186–192 https://waset.org/publications/6041/researchinto-concrete-blocks-with-waste-glass , Accessed date: 28 April 2019.
[42] A. Mohajerani, J. Vajna, T.H.H. Cheung, H. Kurmus, A. Arulrajah, S. Horpibulsuk, Practical recycling applications of crushed waste glass in construction materials: a review, Constr. Build. Mater. 156 (2017) 443–467, https://doi.org/10.1016/J. CONBUILDMAT.2017.09.005.
[43] M. Belouadah, Z.E.A. Rahmouni, N. Tebbal, Effects of glass powder on the characteristics of concrete subjected to high temperatures, Adv. Concr. Constr. 6 (2018) 311–322, https://doi.org/10.12989/ACC.2018.6.3.311.
[44] S. Lv, T. Liu, T. Ma, Effect of GO nanosheets on mechanical properties of cement composites, Cement Concr. Compos. 98 (2019) 33-42, https://doi.org/10.1016/j.cemconcomp.2019.02.003.
[45] H. Du, S.D. Pang, Enhancement of barrier properties of cement mortar with graphene nanoplatelets, Constr. Build. Mater. 240 (2020) 117931, https://doi.org/10.1016/j.conbuildmat.2019.117931.
[46] K. Novoselov, A.K. Geim, I. Abrikosov, Graphene-reinforced self-compacting concrete: Mechanical and durability properties, Mater. Des. 199 (2021) 109406, https://doi.org/10.1016/j.matdes.2020.109406.
[47] L. Zhang, W. Chen, X. Li, Nanocomposite cement materials with graphene derivatives: A comprehensive review, Compos. Part B-Eng. 216 (2022) 108862, https://doi.org/10.1016/j.compositesb.2021.108862.
[48] Y. Wang, R. Huang, J. Zhao, Lightweight structural concrete with nano-additives: Performance evaluation, J. Mater. Civ. Eng. 32(4) (2020) 04020035, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003092.