[1] Singh, N.B. and Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials. 237, 117455, (2020).
[2] Davidovits, J. Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis and calorimetry, 37(8), 1633-1656, (1991).
[3] Reddy, M. S., Dinakar, P. ‌and Rao, B. H. A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials, 234, 12-23, (2016).
[4] Duan, P., Yan, C., and Luo, W. A novel waterproof, fast setting and high early strength repair material derived from metakaolin geopolymer. Construction and Building Materials, 124, 69-73, (2016).
[5] Zhang, W., Yao, X., Yang, T., Liu, C., ‌and Zhang, Z. Increasing mechanical strength and acid resistance of geopolymers by incorporating different siliceous materials. Construction and Building Materials, 175, 411-421, (2018).
[6] Lahoti, M., Tan, K. H., ‌and Yang, E. H. A critical review of geopolymer properties for structural fire-resistance applications. Construction and Building Materials, 221, 514-526, (2019).
[7] Podolsky, Z., Liu, J., Dinh, H., Doh, J. H., Guerrieri, M., ‌and Fragomeni, S. State of the art on the application of waste materials in geopolymer concrete. Case Studies in Construction Materials, 15, e00637, (2021).
[8] Qaidi, S. M., Tayeh, B. A., Isleem, H. F., de Azevedo, A. R., Ahmed, H. U., ‌and Emad, W. Sustainable utilization of red mud waste (bauxite residue) and slag for the production of geopolymer composites: A review. Case Studies in Construction Materials, 16, e00994, (2022).
[9] Heath, A., Paine, K., Goodhew, S., Ramage, M., ‌and Lawrence, M. The potential for using geopolymer concrete in the UK. Proceedings of the Institution of Civil Engineers-Construction Materials, 166(4), 195-203, (2013).
[10] Mayes, W. M., Burke, I. T., Gomes, H. I., Anton, Á. D., Molnár, M., Feigl, V., ‌and Ujaczki, É. Advances in understanding environmental risks of red mud after the Ajka spill, Hungary. Journal of Sustainable Metallurgy, 2, 332-343, (2016).
[11] Li, Z., You, H., Gao, Y., Wang, C., and Zhang, J. Effect of ultrafine red mud on the workability and microstructure of blast furnace slag-red mud based geopolymeric grouts. Powder Technology, 392, 610-618, (2021).
[12] Zakira, U., Zheng, K., Xie, N., and Birgisson, B. Development of high-strength geopolymers from red mud and blast furnace slag. Journal of Cleaner Production, 383, 135439, (2023).
[13] Tian, K., Wang, Y., Dong, B., Fang, G., and Xing, F. Engineering and Micro-properties of alkali-activated slag pastes with Bayer red Mud. Construction and Building Materials, 351, 128869, (2022).
[14] Liang, X., and Ji, Y. Experimental study on durability of red mud-blast furnace slag geopolymer mortar. Construction and Building Materials, 267, 120942, (2021).
[15] Bayat, A., Hassani, A., and Yousefi, A. A. Effects of red mud on the properties of fresh and hardened alkali-activated slag paste and mortar. Construction and Building Materials, 167, 775-790, (2018).
[16] Yin, H., Liu, J., Zhou, X., Qi H., Liu, S and Pang S. Flexural properties of fiber-reinforced alkali slag-red mud geopolymer. Construction and Building Materials, 370, e130708, (2023).
[17] Wang, C., Li, Z., Zhou, Z., Gao, Y. and Zhang, J. Compatibility of different fibres with red mud-based geopolymer grouts. Construction and Building Materials,315, e125742, (2022).
[18] Babatunde, S. A. Review of strengthening techniques for masonry using fiber reinforced polymers. Composite Structures, 161, 246-255, (2017).
[19] Bhattacharya, S., Nayak, S. and Dutta, S. C. A critical review of retrofitting methods for unreinforced masonry structures. International Journal of Disaster Risk Reduction, 7, 51-67, (2014).
[20] Esmaeeli, E., Manning, E. and Barros, J. Strain hardening fibre reinforced cement composites for the flexural strengthening of masonry elements of ancient structures. Construction and Building Materials, 38, 1010-1021, (2013).
[21] Mastali, M., Kinnunen, P., Dalvand, A., Firouz, R. M., and Illikainen, M. Drying shrinkage in alkali-activated binders–a critical review. Construction and Building Materials, 190, 533-550, (2018).
[22] Ou, Z., Feng, R., Li, F., Liu, G., and Li, N. Development of drying shrinkage model for alkali-activated slag concrete. Construction and Building Materials, 323, 126556, (2022).
[23] Collins, F., and Sanjayan, J. G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research, 30(9), 1401-1406, (2000).
[24] Ranjbar, N., Zhang, M. Fiber-reinforced geopolymer composites: A review. Cement and Concrete Composites, 107, e103498, (2020).
[25] Rashad, A. M. Effect of steel fibers on geopolymer properties – The best synopsis for civil engineer. Construction and Building Materials, 246, e118534, (2020).
[26] Qaidi, S. M., Tayeh, B. A., Isleem, H. F., de Azevedo, A. R., Ahmed, H. U., ‌and Emad, W. Sustainable utilization of red mud waste (bauxite residue) and slag for the production of geopolymer composites: A review. Case Studies in Construction Materials, 16, e00994, (2022).
[27] Zhang, P., Zheng, Y., Wang, K., and Zhang, J. A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Engineering, 152, 79-95, (2018).
[28] Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K., and Hussein, A. A. Geopolymer mortars as sustainable repair material: A comprehensive review. Renewable and Sustainable Energy Reviews, 80, 54-74, (2017).
[29] Chen, S., Ruan, S., Zeng, Q., Liu, Y., Zhang, M., Tian, Y., and Yan, D. Pore structure of geopolymer materials and its correlations to engineering properties: A review. Construction and Building Materials, 328, 127064, (2022).
[30] Dehghan, S. M., M. R. Karamian, and M. A. Najafgholipour. An experimental and analytical study on the out-of-plane behavior of URM prisms strengthened with SFRC overlays. Structures. Vol. 33. Elsevier, (2021).
[31] Najafgholipour, M. A., S. M. Dehghan, A. R. Mirzaee, and A. A. Aghaei. Experimental investigation on flexural behavior of masonry prisms strengthened by fiber-reinforced mortar layer. Iranian Journal of Science and Technology, Transactions of Civil Engineering 40, 277-286, (2016).