بررسی تأثیر مواد افزودنی حباب‌زا بر روی نفوذپذیری و دوام بتن ساخته شده با سیمان پرتلند 525-1

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه حکیم سبزواری

2 عضو هیئت علمی گروه مهندسی عمران، دانشگاه حکیم سبزواری

10.22124/jcr.2023.23698.1609

چکیده

در این تحقیق تأثیر کاربرد مواد هواساز بر روی خصوصیات مقاومتی و نفوذپذیری بتن حاوی سیمان نوع 1 رده 525 بررسی شده است. تأثیر 3 درصد وزنی مختلف ماده هواساز (نسبت به سیمان) بر روی دوام بتن بررسی شد. آزمایش‌های انجام شده شامل آزمایش تعیین کارآیی (اسلامپ)، تعیین جرم حجمی بتن تازه، تعیین دمای بتن تازه، تعیین درصد هوای محبوس در بتن با استفاده از روش هوای فشرده، تعیین مقاومت فشاری، تعیین مقاومت الکتریکی حجمی و آزمایش تعیین ضریب نفوذپذیری بتن بوده است. نتایج نشانگر آن است که میزان ماده افزودنی حباب‌زا در بتن دارای یک حد آستانه (0/05 درصد وزنی سیمان) می‌باشد بطوریکه استفاده از مقادیر ماده افزودنی حباب‌زا کمتر از این حد آستانه تأثیر بسیار کمی در ایجاد حباب هوا در بتن دارد. کاربرد 0/1 درصد وزنی سیمان ماده هواساز موجب افزایش حدود 26 درصد کارآیی بتن می‌شود. کاربرد ماده هواساز باعث افزایش قابل توجه در کارآیی بتن تازه بدون ایجاد مشکلاتی نظیر جداشدگی و آب‌انداختگی شده است. به طور کلی هوازایی موجب افت جرم حجمی بتن، مقاومت فشاری، مقاومت الکتریکی و ضریب انتشار یون کلراید شده است. نتایج تحقیق همچنین نشان می‌دهد که ایجاد هر یک درصد هوای محبوس در بتن موجب کاهش 5 درصدی مقاومت فشاری بتن می‌شود. افزایش درصد هوای محبوس در بتن از 1/9 درصد تا 13/4 درصد موجب افت ناچیزی در شاخص‌های نفوذپذیری بتن شامل ضریب انتشار یون کلر و مقاومت الکتریکی ویژه بتن می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the effect of air-entraining admixture on the permeability and durability of concrete materials made of Portland cement type 1-525

نویسندگان [English]

  • Azam Kamel 1
  • Mojtaba Lezgy-Nazargah 2
  • Morteza Tayebinia 1
1 Department of civil engineering, Hakim Sabzevari University
2 Faculty of civil engineering, Hakim Sabzevari University
چکیده [English]

In this research, the effect of the use of air-entraining admixture on the resistance and permeability of concrete materials made of Portland cement type 1-525 has been investigated. The effect of three different percentages of AEA was investigated on durability of concrete. The tests performed include the slump test, determination of volumetric mass of the fresh concrete, determining the temperature of fresh concrete, determination of the percentage of air content in concrete using the pressure method, the determination of compressive strength, the determination of volumetric electrical resistance, and determination of permeability coefficient. The results show that the amounts of used AEAs in concrete has a critical dosage (0.05% by weight of cement), so that the use of AEAs amounts less than this dosage has very little effect on creating enough air bubbles in the concrete. The use of a dosage of 0.1% AEA by weight of cement increased the workability of concrete about 26%. Moreover, the use of AEA has caused a significant increase in the workability of the fresh concrete without causing problems such as segregation and bleeding. In general, AEA led to a decrease in volumetric mass, compressive strength, electrical resistance and chloride ion diffusion coefficient of the concrete material. The results also show that the replacement of 1% of concrete's volume by the air bubbles decreases the compressive strength of concrete about 5%. The increase of the air content of concrete from 1.9% to 13.4% leads to a slight drop in the permeability coefficients of concrete.

کلیدواژه‌ها [English]

  • Air-entraining admixture
  • Electrical resistance of concrete
  • Compressive strength
  • Chloride ion diffusion coefficient
  • Durability
  • High-strength concrete
[1] KS. Chia, and MH. Zhang, “Water permeability and chloride penetrability of high-strength lightweight aggregate concrete”, Cement and Concrete Research, vol. 2(4), pp. 639-645, 2002.
[2] AD. Tegguer, S. Bonnet, A. Khelidj, and V. Baroghel-Bouny, “Effect of uniaxial compressive loading on gas permeability and chloride diffusion coefficient of concrete and their relationship”, Cement and Concrete Research, vpl. 52, pp. 131-139, 2013.
[3] امیررضا پیلوار، علی اکبر رمضانیانپور، حسین رجایی، بررسی آزمایشگاهی روشهای تسریع یافته الکتریکی سنجش نفوذپذیری کلریدی بتن، تحقیقات بتن، سال نهم، شمارة دوم، پائیز و زمستان 95، صفحات 5 – 15
[4] A. Bagheri, A. Ajam, and H. Zanganeh, “Effect of very early age exposure on chloride ingress and service life performance of binary and ternary concretes”, Construction and Building Materials, vol. 289, pp. 123137, 2021.
[5] C. Liang, H. Ma, Y. Pan, Z. Ma, Z. Duan, and Z. He, “Chloride permeability and the caused steel corrosion in the concrete with carbonated recycled aggregate”, Construction and Building Materials, vol. 218, pp. 506-518, 2019.
[6] CM. Tibbetts, JM. Paris, CC. Ferraro, KA. Riding, and G. Timothy, Townsend, “Relating water permeability to electrical resistivity and chloride penetrability of concrete containing different supplementary cementitious materials”, Cement and Concrete Composites, vol. 107, pp. 103491, 2020.
[7] TT. Tran, DT. Pham, MN. Vu, VQ. Truong, XB. Ho, NL. Tran, T. Nguyen-Sy, and QD. To, “Relation between water permeability and chloride diffusivity of concrete under compressive stress: Experimental investigation and mesoscale lattice modelling”, Construction and Building Materials, vol. 267, pp. 121164, 2021.
[8] SS. Raza, BA. M-Noman, M. Fahadd, and KM. Elhadi, “Mechanical properties, flexural behavior, and chloride permeability of high-performance steel fiber-reinforced concrete (SFRC) modified with rice husk ash and micro-silica”, Construction and Building Materials, vol. 359, pp. 129520, 2022.
[9] F. Xu, X. Lin, and A. Zhou, “Effect of recycled ceramic aggregate on hydration heat and permeability of high performance concrete”, Cement and Concrete Composites, vol. 137, pp. 104930, 2023.
[10] C. Chen, C. Lu, C. Lu, S. Wei, Z. Guo, Q. Zhou, and W. Wang, “Synergetic effect of fly ash and ground-granulated blast slag on improving the chloride permeability and freeze–thaw resistance of recycled aggregate concrete”, Construction and Building Materials, vpl. 365, pp. 130015, 2023.
[11] استاندارد ملی ایران 389، سیمان-تعیین مقاومت فشاری و خمشی روش آزمون، 1375
[12] ASTM C150, “Common Reference Type I Portland Cement for use in ASTM C989-12 Slag Activity Testing”, 2017.
[13] استاندارد ملی ایران شماره4977،   سنگ‌دانه­ها-دانه­بندی  سنگ‌دانه­های ریز و درشت-روش آزمون، 1393
[14] استاندارد ملی ایران شماره 302،  سنگ‌دانه­­های بتن – ویژگی­ ها، 1399
[15] استاندارد ملی ایران به شماره4982،  سنگ‌دانه- تعیین چگالی، چگالی نسبی (وزن مخصوص) و جذب آب  سنگ‌دانه‌ درشت- روش آزمون، 1396
[16] استاندارد ملی ایران شماره  446،  سنگ‌دانه­ها- تعیین مواد ریزتر از الک 75 میکرومتر (نمره 200) در  سنگ‌دانه­های معدنی با شستشو - روش آزمون، 1400
[17] استاندارد ملی ایران 581،  بتن -ساخت و عمل­آوری آزمونه­های بتن در آزمایشگاه-آیین کار، 1393
[18] استاندارد ملی ایران 2-3203، بتن تازه-قسمت دوم-تعیین روانی به روش اسلامپ -روش آزمون، 1386
[19] استاندارد ملی ایران 6-3203، بتن تازه - قسمت 6: چگالی –روش آزمون، 1397
[20] استاندارد ملی ایران 3520، بتن تازه- تعیین مقدار هوای بتن تازه مخلوط­ شده به روش فشاری- روش آزمون، 1397
[21] آیین­نامه آبا، نشریه 120-2، مصالح و اجرا، سازمان برنامه و بودجه کشور، 1400
[22] BS EN 12390 part 3 “Testing hardened concrete Part 3: Compressive strength of test specimens”, British Standards Institution, London, UK, 2009.
[23] مبحث 9 مقرارت ملی ساختمان، طرح و اجرای ساختمان­های بتن آرمه، دفتر مقرارت ملی ساختمان، ویرایش پنجم، 1399.
[24] باقری، م.، زنگانه، ح.، مقایسه عملکرد روش RCMT برای ارزیابی سریع مقاومت بتن در برابر نفوذ یون کلر با روش­های RCPT و مقاومت الکتریکی، مجله علمی- پژوهشی عمران مدرس، دوره دوازدهم، شماره 3، پاییز 1391.
[25] NT Build 492 “Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments”, NORDTEST, 1999.