Prediction of the interlayer shear strength of SCS panels with corrugated- strip shear connectors using gene expression programming algorithm

Document Type : Research Paper

Authors

1 Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran

2 Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran.

10.22124/jcr.2023.22432.1582

Abstract

Today, construction of large structures is growing quickly. For this reason, it is necessary to find the material with a rather low weight and high strength. For this purpose, Steel-Concrete-Steel (SCS) sandwich structures were proposed. SCS structures are composed of two steel layers and one concrete layer. Due to their low weight and high strength and flexibility, they have become popular among engineers. In the present research, first, three specimens of push-out test of strip shear connector were modeled and validated using ABAQUS finite elements software. Then, since the present equations to predict the shear strength of the shear connectors are complicated and are not so precise, the authors proposed an equation taking the effects of different geometrical parameters and the concrete's compressive strength in to account. For this purpose, using the experimental design, 17 specimens were designed and modeled. Then, an equation was proposed using the Genetic Expression Programming Algorithm (GEP) to predict the system's shear strength. Finally, the performance of the proposed equation was evaluated using the error parameters.

Keywords

Main Subjects


[1]          S. K. Solomon, D. W. Smith, and A. R. Cusens, “Flexural tests of steel-concrete-steel sandwiches,” Mag. Concr. Res., vol. 28, no. 94, pp. 13–20, Mar. 1976, doi: 10.1680/macr.1976.28.94.13.
[2]          H. D. Wright, T. O. S. Oduyemi, and H. R. Evans, “The design of double skin composite elements,” J. Constr. Steel Res., vol. 19, no. 2, pp. 111–132, 1991, doi: 10.1016/0143-974X(91)90037-2.
[3]          M. Xie and J. C. Chapman, “Developments in sandwich construction,” J. Constr. Steel Res., vol. 62, no. 11, pp. 1123–1133, 2006, doi: 10.1016/j.jcsr.2006.06.025.
[4]          K. M. A. Sohel, J. Y. Richard Liew, and C. G. Koh, “Numerical modelling of lightweight Steel‐Concrete‐Steel sandwich composite beams subjected to impact,” Thin-Walled Struct., vol. 94, pp. 135–146, Sep. 2015, doi: 10.1016/j.tws.2015.04.001.
[5]          M. Yousefi and M. Ghalehnovi, “Push-out test on the one end welded corrugated-strip connectors in steel-concrete-steel sandwich structure,” Steel Compos. Struct., vol. 24, no. 1, pp. 23–35, 2017, doi: 10.12989/scs.2017.24.1.023.
[6]          M. Yousefi and M. Ghalehnovi, “Finite element model for interlayer behavior of double skin steel-concrete-steel sandwich structure with corrugated-strip shear connectors,” Steel Compos. Struct., vol. 27, no. 1, pp. 123–133, 2018, doi: 10.12989/scs.2018.27.1.123.
[7]          محمد گل­محمدی، منصور قلعه نوی، بررسی رفتار برشی بین لایه­ای سازه ساندویچی فولاد-بتن-فولاد با اتصال دهنده­های پیچ میله مقاومت بالا، تحقیقات بتن،سال دهم،شماره سوم.
[8]          B. A. Burgan and F. J. Naji, “Steel-concrete-steel sandwich construction,” J. Constr. Steel Res., vol. 1, no. 46, p. 219, 1998.
[9]          L. Tong, L. Chen, M. Wen, and C. Xu, “Static behavior of stud shear connectors in high-strength-steel–UHPC composite beams,” Eng. Struct., vol. 218, no. March, p. 110827, Sep. 2020, doi: 10.1016/j.engstruct.2020.110827.
[10]        J. B. Yan, H. Hu, and T. Wang, “Shear behaviour of novel enhanced C-channel connectors in steel-concrete-steel sandwich composite structures,” J. Constr. Steel Res., vol. 166, p. 105903, Mar. 2020, doi: 10.1016/j.jcsr.2019.105903.
[11]        M. Yousefi and S. Hashem Khatibi, “Experimental and numerical study of the flexural behavior of steel–concrete-steel sandwich beams with corrugated-strip shear connectors,” Eng. Struct., vol. 242, p. 112559, Sep. 2021, doi: 10.1016/j.engstruct.2021.112559.
[12]        K. & S. Hibbitt, “ABAQUS User’s Manual,” ABAQUS/CAE User’s Man., pp. 1–847, 2012.
[13]        M. Yousefi, M. Golmohammadi, S. H. Khatibi, and M. Yaghoobi, “Prediction of the punching load strength of SCS slabs with stud bolt shear connectors using numerical modeling and GEP algorithm,” J. Rehabil. Civ. Eng., 2022, doi: 10.22075/JRCE.2022.26528.1628.
[14]        F. H. Wittmann, P. E. Roelfstra, H. Mihashi, Y.-Y. Huang, X.-H. Zhang, and N. Nomura, “Influence of age of loading, water-cement ratio and rate of loading on fracture energy of concrete,” Mater. Struct., vol. 20, no. 2, pp. 103–110, Mar. 1987, doi: 10.1007/BF02472745.
[15]        C. Ferreira, “Gene Expression Programming in Problem Solving,” in Soft Computing and Industry, London: Springer London, 2002, pp. 635–653.
[16]        D. Muñoz, “Thesis Discovering unknown equations that describe large data sets using genetic programming techniques,” Masters Thesis, Linköping Institute of Technology. Institutionen för systemteknik, 2005, [Online]. Available: http://liu.diva-portal.org/smash/get/diva2:19975/FULLTEXT01.
[17]        W. Kleppmann, “Statistische Versuchsplanung,” in Masing Handbuch Qualitätsmanagement, vol. 158, no. 11, München: Carl Hanser Verlag GmbH & Co. KG, 2014, pp. 499–522.
[18]        “حامد قوهانی عرب ، همکاران ،تخمین مقاومت برشی بتن با استفاده از الگوریتم برنامه­ریزی بیان ژنی، تحقیقات بتن،سال سیزدهم،شماره سوم.
[19]        A. ANSI, “ANSI/AISC 360-10. Specification for structural steel buildings, American
Institute of Steel Construction,” Inc. Chicago, 2010.
[20]        پویان فخاریان،همکاران، ارائه مدل پیشبینی مقاومت ستونهای با مقاطع مربع یا مستطیل محصور شده با الیاف پلیمری(FRP) به­وسیله­ی روش برنامه­ریزی عبارتی ژنتیک(GEP)، تحقیقات بتن،سال یازدهم،شماره اول.