[1] C. Pei, J.H. Zhu, F. Xing, Photocatalytic property of cement mortars coated with graphene/TiO2 nanocomposites synthesized via sol–gel assisted electrospray method, J Clean Prod. 279 (2021) 123590. https://doi.org/10.1016/J.JCLEPRO.2020.123590.
[2] F.R. Lamastra, M. Chougan, E. Marotta, S. Ciattini, S.H. Ghaffar, S. Caporali, F. Vivio, G. Montesperelli, U. Ianniruberto, M.J. Al-Kheetan, A. Bianco, Toward a better understanding of multifunctional cement-based materials: The impact of graphite nanoplatelets (GNPs), Ceram Int. 47 (2021) 20019–20031. https://doi.org/10.1016/J.CERAMINT.2021.04.012.
[3] V. v. Tyukavkina, E.A. Shchelokova, A. v. Tsyryatyeva, A.G. Kasikov, TiO2–SiO2 nanocomposites from technological wastes for self-cleaning cement composition, Journal of Building Engineering. 44 (2021) 102648. https://doi.org/10.1016/J.JOBE.2021.102648.
[4] L. Wang, F. Aslani, Mechanical properties, electrical resistivity and piezoresistivity of carbon fibre-based self-sensing cementitious composites, Ceram Int. 47 (2021) 7864–7879. https://doi.org/10.1016/j.ceramint.2020.11.133.
[5] Toward a better understanding of multifunctional cement-based materials: The impact of graphite nanoplatelets (GNPs) - ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/pii/S0272884221010518 (accessed August 23, 2022).
[6] A.M. Onaizi, G.F. Huseien, N.H.A.S. Lim, M. Amran, M. Samadi, Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review, Constr Build Mater. 306 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124850.
[7] F. Babak, H. Abolfazl, R. Alimorad, G. Parviz, Preparation and mechanical properties of graphene oxide: Cement nanocomposites, The Scientific World Journal.2014(2014). https://doi.org/10.1155/2014/276323.
[8] X. Li, A.H. Korayem, C. Li, Y. Liu, H. He, J.G. Sanjayan, W.H. Duan, Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength, Constr Build Mater. 123(2016)327–335. https://doi.org/10.1016/j.conbuildmat.2016.07.022.
[9] H. Yang, H. Cui, W. Tang, Z. Li, N. Han, F. Xing, A critical review on research progress of graphene/cement based composites, Compos Part A Appl Sci Manuf. 102 (2017) 273–296. https://doi.org/10.1016/j.compositesa.2017.07.019.
[10] J.G. Sanjayan, C.M. Wang, W.H. Duan, S. Chuah, Z. Pan, Nano reinforced cement and concrete composites and new perspective from graphene oxide, Constr Build Mater. 73(2014)113–124. https://doi.org/10.1016/j.conbuildmat.2014.09.040.
[11] V. Papadopoulos, P. Seventekidis, G. Sotiropoulos, Stochastic multiscale modeling of graphene reinforced composites, Eng Struct. 145 (2017) 176–189. https://doi.org/10.1016/j.engstruct.2017.05.015.
[12] Q.H. Zeng, A.B. Yu, G.Q. Lu, Multiscale modeling and simulation of polymer nanocomposites, Progress in Polymer Science (Oxford). 33 (2008) 191–269. https://doi.org/10.1016/j.progpolymsci.2007.09.002.
[13] M. Cho, S. Yang, Multiscale Modeling of Polymer-Nanotube Nanocomposites, Polymer Nanotubes Nanocomposites: Synthesis, Properties and Applications: Second Edition. 9781118945 (2014) 117–166. https://doi.org/10.1002/9781118945964.ch3.
[14] Z. Qian, Multiscale Modeling of Fracture Processes in Cementitious Materials, 2012.
[15] P. Paristech, G. Ye, E. Schlangen, K. van Breugel, Modeling Fracture Behavior of Cement Paste Based on Its, (2012) 21–23.
[16] P.K. Valavala, G.M. Odegard, Modeling techniques for determination of mechanical properties of polymer nanocomposites, Reviews on Advanced Materials Science. 9 (2005) 34–44.
[17] Y. Li, G.D. Seidel, Multiscale modeling of the interface effects in CNT-epoxy nanocomposites, Comput Mater Sci. 153 (2018)363–381. https://doi.org/10.1016/j.commatsci.2018.07.015.
[18] K. Maekawa, T. Ishida, T. Kishi, Multi-scale Modeling of Concrete Performance Integrated Material and Structural Mechanics, 1 (2003) 91–126.
[19] A.M. Reichanadter, C.M. Hadden, E.J. Pineda, I. Miskioglu, S. Gowtham, J.A. King, G.M. Odegard, D.R. Klimek-McDonald, Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments, Carbon N Y. 95 (2015) 100–112. https://doi.org/10.1016/j.carbon.2015.08.026.
[20] J.F. Wang, L.W. Zhang, K.M. Liew, A multiscale modeling of CNT-reinforced cement composites, Comput Methods Appl Mech Eng. 309 (2016) 411–433. https://doi.org/10.1016/j.cma.2016.06.019.
[21] A. Buyukkaragoz, I. Kalkan, NUMERICAL ANALYSIS OF AERATED CONCRETE AND HOLLOW BRICK WALLS STRENGTHENED WITH STEEL-FIBERED CONCRETE PANELS, Journal of Applied Mechanics and Technical Physics. 62 (2021) 193–199. https://doi.org/10.1134/S0021894421020024.
[22] J.J. Liao, J.J. Zeng, C. Jiang, J.X. Li, J.S. Yuan, Stress-strain behavior and design-oriented model for FRP spiral strip-confined concrete, Compos Struct. 293 (2022) 115747. https://doi.org/10.1016/J.COMPSTRUCT.2022.115747.
[23] S. Ros, H. Shima, RELATIONSHIP BETWEEN SPLITTING TENSILE STRENGTH AND COMPRESSIVE STRENGTH OF CONCRETE AT EARLY AGE WITH DIFFERENT TYPES OF CEMENTS AND CURING TEMPERATUREHISTORIES,2013. https://www.researchgate.net/publication/251231886.
[24] J. Lee, G.L. Fenves, Plastic-damage model for cyclic loading of concrete structures, J Eng Mech. 124 (1998) 892–900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
[25] A.K. Salve, S.N. Jalwadi, Implementation of Cohesive Zone in ABAQUS to Investigate Fracture Problems, National Conference for Engineering Post Graduates RIT. (2011) 60–66.
[26] P.P. Camanho, C.G. Davila, M.F. de Moura, Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials, J Compos Mater. 37 (2003) 1415–1438. https://doi.org/10.1177/0021998303034505.
[27] ابوالفضل علیزاده صحرایی, بررسی تغییر خواص موثر نانو کامپوزیت اپوکسی/ نانولوله کربنی تحت کشش :رهیافت تجربی و محاسباتی، (1398).
[28] Reeder J.R., 3D Mixed-Mode Delamination Fracture Criteria–An Experimentalist’s Perspective James R. Reeder, 21st Anual Technical Conference. (2006) 1–19.
[29] M. Safaei, A. Sheidaei, M. Baniassadi, S. Ahzi, M. Mosavi Mashhadi, F. Pourboghrat, An interfacial debonding-induced damage model for graphite nanoplatelet polymer composites, Comput Mater Sci. 96 (2015) 191–199. https://doi.org/10.1016/j.commatsci.2014.08.036.
[30] V.Papadopoulos,M. mpraimakis, Multiscale modeling of carbon nanotube reinforced concrete, Compos Struct. 182 (2017)251–260. https://doi.org/10.1016/j.compstruct.2017.09.061.