Experimental study of squat concrete shear wall reinforced with both steel and GFRP bars under cyclic lateral loading

Document Type : Research Paper

Authors

1 Dept. of civil Engineering Shahid Rajaee Teacher training University

2 Faculty of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

10.22124/jcr.2021.18989.1483

Abstract

In this experimental paper, the influence of using both longitudinal steel and GFRP bars on squat concrete shear wall has been investigated. The main purpose of this research is to study the effect of applying a hybrid system on the failure mechanism and seismic performance of specimens. For this purpose, three cantilever shear walls in full scale under cycle lateral loading with aspect ratio 1.0 have been tested. The S-SSW specimens with longitudinal and transverse steel bars, used as reference, and the G-SSW specimens reinforced with longitudinal and transverse GFRP bars as well as the SG-SSW specimens reinforced with both longitudinal steel and GFRP bars and GFRP transverse bars were examined. The results indicated the use of the hybrid system has changed the failure mode from concrete crushing in the compression zone to bar rupture. Also, the parameters such as residual deformation, secant stiffness, energy dissipation and ductility increased in the SG-SSW compared to the G-SSW specimen.

Keywords

Main Subjects


[1] Wallace, J. W., and Moehle, J. P. (1992). “Ductility and detailing requirements of bearing wall buildings.” J. Struct. Eng., 10.1061/ (ASCE) 0733- 9445(1992)118:6(1625), 1625–1644.
[2] Paulay T, Priestley MJN, Synge AJ. Ductility in earthquake resisting squat shear walls. ACI J 1982;79(4):257–69.
[3] Sittipunt C, Wood SL, Lukkunaprasit P, Pattararattanakul P. Cyclic behavior of reinforced concrete structural walls with diagonal web reinforcement. ACI Struct J 2001;98(4):554–62.
[4] ACI440.1R-15. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars. ACI Committee 2015; 440.
[5] Bazli, M., Ashrafi, H., & Oskouei, A. V. (2016). Effect of harsh environments on mechanical properties of GFRP pultruded profiles. Composites Part B: Engineering, 99, 203-215.
[6] Canadian Standards Association. (2012). “Design and Construction of Building Structures with Fibre-Reinforced Polymers,” (CAN/CSA S806-12). Canadian Standards Association Mississauga, Ont.
[7] Zadeh, H. J., & Nanni, A. (2012). “Design of RC columns using glass FRP reinforcement.” Journal of Composites for Construction, 17(3), 294-304.
[8] Ashrafi, H., Bazli, M., & Oskouei, A. V. (2017). “Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchorage.” Construction and Building Materials, 134, 507-519.
[9] Sun, Z., Wu, G., Zhang, J., Zeng, Y., & Xiao, W. (2017). “Experimental study on concrete columns reinforced by hybrid steel-fiber reinforced polymer (FRP) bars under horizontal cyclic loading.” Construction and Building Materials, 130, 202-211.
[10] Arafa, A., Farghaly, A. S., & Benmokrane, B. (2018). “Effect of web reinforcement on the seismic response of concrete squat walls reinforced with glass-FRP bars.” Engineering Structures, 174, 712-723.
[11] Zhang, Q., Xiao, J., Liao, Q., & Duan, Z. (2019). “Structural behavior of seawater sea-sand concrete shear wall reinforced with GFRP bars.” Engineering Structures, 189, 458-470.
]12[ مبحث نهم مقررات ملی ساختمان، بارهای وارده بر ساختمان، دفتر تدوین و ترویج مقررات ملی ساختمان، 1399
[13] ACI Committee 318., American Concrete Institute. (2019). Building code requirements for structural concrete (ACI 318-19): an ACI standard; commentary on building code requirements for structural concrete (ACI 318R-19). Second printing: January 2020, Farmington Hills, MI: American Concrete Institute.
[14] Shakiba, M., Oskouei, A. V., Karamloo, M., & Doostmohamadi, A. (2021). Effect of mat anchorage on flexural bonding strength between concrete and sand coated GFRP bars. Composite Structures, 273, 114339.
[15] Mohamed, N., Farghaly, A. S., Benmokrane, B., and Neale, K.W. (2014a). “Experimental investigation of concrete shear walls reinforced with glass fiber–reinforced bars under lateral cyclic loading.” J. Compos. Constr., 10.1061/ (ASCE) CC.1943-5614.0000393, A4014001.
[16] Mohamed, N., Farghaly, A. S., Benmokrane, B., & Neale, K. W. (2014). “Drift Capacity Design of Shear Walls Reinforced with Glass Fiber-Reinforced Polymer Bars.” ACI Structural Journal, 111(6), 1397.
[17] JGJ/T101, Specification for seismic test of buildings, Beijing. 2015. (In Chinese).
[18] Mohamed, N., Farghaly, A. S., Benmokrane, B., and Neale, K.W. (2014b). “Flexure and shear deformation of GFRPRC shear walls.” J. Compos. Constr., 10.1061/(ASCE)CC.1943-5614.0000444, 04013044.
[19] Mohamed N, Farghaly AS, Benmokrane B, Neale KW. Evaluation of GFRP-reinforced shear walls. Canadian society for civil engineering 2013 general conference, Montréal, Québec, Canada. 2013. p. 1–10.
[20] Mohamed N, Ahmed SF, Benmokrane B. Evaluation of a shear wall reinforced with glass FRP bars subjected to lateral cyclic loading. 3rd Asia-pacific conference on FRP in structures, Sapporo, Japan. 2012. p. 1–10.
[21] Priestley, M. J. N., and Kowalsky, M. J. (1998). “Aspects of drift and ductility capacity of rectangular structural walls.” Bull. N. Z. Nat. Soc. Earthquake Eng., 31, 73–85.
[22] Mohamed, N., Farghaly, A. S., and Benmokrane, B. (2013). “Strength reduction factor of GFRPRC shear walls.” 4th Asia-Pacific Conf. on FRP in Structures (APFIS2013), Melbourne, Australia.
[23]  Paulay, T., and Priestley, M. J. N., 1995, Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, Inc., New York, 735 pp.
[24] Munoz, W.; Salenikovich, A.; Mohammad, M.; and Quenneville, P., 2008, “Determination of Yield Point and Ductility of Timber Assemblies: in Search for a Harmonised Approach,” Proceedings of Meeting 41 of
CIB-W18, St. Andrews, NB, Canada.
[25] Branston, A. E.; Boudreault, F. A.; and Rogers, C. A., 2005, “Methodfor the Design of Light Gauge Steel Frame/Wood Panel Shear Walls,”Advances in Steel Structures, Elsevier, V. II, pp. 1347-1352.
[26] Rogers, C. A.; Balh, N.; Ong-Tone, C.; Shamim, I.; and DaBreo, J., 2011, “Development of Seismic Design Provisions for Steel Sheet Sheathed Shear Walls,” Proceedings of the Structures Congress, ASCE, Las Vegas,
NV, pp. 676-687.
[27] Shedid, M. T.; El-Dakhakhni, W. W.; and Drysdale, R. G., 2009, “Behavior of Fully Grouted Reinforced Concrete Masonry Shear Walls Failing in Flexure: Analysis,” Engineering Structures, V. 31, No. 9, pp. 2032-2044. doi: 10.1016/j.engstruct.2009.03.006
[28] Kessler, S., 2010, “A Study of the Seismic Response Modification Factor for Log Shear Walls,” MSc thesis, Kansas State University, Manhattan, KS, 113 pp.
[29] National Building Code of Canada (NBCC), 2010, Canadian Commission on Building and Fire Codes, National Research Council of Canada, Montreal, QC, Canada.
[30] Pauley T., Priestley M. J. N., Synge A. J., “Ductility in Earthquake Resisting Squat Shearwalls.