Evaluation of bond strength of glass fiber-reinforced polymer in concrete beams

Document Type : Research Paper

Authors

1 Assistant professor, Department of Civil Engineering, Ferdows branch, Islamic Azad University, Ferdows, Iran

2 Assistant professor, University of Gonabad, Gonabad, Iran

10.22124/jcr.2023.20386.1509

Abstract

The performance of concrete structures is affected by the transfer of force between rebar and concrete, which depends on factors such as concrete strength, yield stress, rebar geometry, rebar diameter, concrete cover and splice length. Also, the use of reinforced polymer materials has become popular due to their successful application in structure. In this study, the effect of various factors on the bond strength of glass fiber-reinforced polymer bars, used in concrete beams, is evaluated and the accuracy of the equations proposed by different regulations and researchers is investigated. To investigate the effect of different factors on bond strength of glass fiber-reinforced polymer, the results of 43 tests conducted by different researchers have been used. Factors studied on the bond strength include the effect of the surface shape of the reinforcement, concrete strength, the amount of concrete cover on the bar, the splice length and transverse reinforcement. After examining the effect of various factors, the accuracy of the equations provided by regulations and researchers in determining the bond resistance for these laboratory results, the accuracy and standard deviation of each equation is evaluated. The results showed that increasing the compressive strength of concrete in samples without stirrup increases the bond strength, and in samples with stirrup, it has no effect on the bond strength. Also, the majority of existing equations estimate the amount of bond strength more than the values obtained from experiment results.

Keywords

Main Subjects


[1]. Aly, R., Benmokrane, B. and Ebead, U., “Tensile Lap Splicing of Fiber-Reinforced Polymer Reinforcing Bars in Concrete”, ACI Structural Journal, 103(6): pp. 857-864, 2006.
[2]. خیرالدین، علی و مالکی، فهیمه، "ارزیابی تغییر مکان قائم کوتاه مدت تیرهای بتن آرمه با میلگردهای کامپوزیت"، نشریه مهندسی عمران فردوسی، 31(4)، ص129-113، 1397.
[3]. Kazakevich, T., Mamedov, S., Nizhegorodtsev, D. and Klevan, V., “Improving the reliability of FRP bars tests by increasing the adhesive strength in specimen anchor”, IOP Conf. Series: Materials Science and Engineering 896, 2020.
[4]. Wu, Q., Xiao, S. and Iwashita, K., “Experimental study on the interfacial shear stress of RC beams strengthened with prestressed BFRP rod”, Results in Physics, 10, pp. 427–433, 2018.
[5]. Zhao, D., Pan, J., Zhou, Y., Sui, L. and Ye, Z., “New types of steel-FRP composite bar with round steel bar inner core: mechanical properties and bonding performances in concrete,” Construction and Building Materials, 242, pp. 118062, 2020.
[6]. Hadhood, A., Mohamed, H.M., Benmokrane, B., Nanni, A. and Shield, C.K., “Assessment of design guidelines of concrete columns reinforced with glass fiber-reinforced polymer bars”, ACI Structural Journal, 116(4), pp. 193–207, 2019.
[7]. Esfahani, M.R., Rakhshanimehr, M. and Mousavi, S.R., “Bond strength of lap-spliced GFRP bars in concrete beams”, Journal of Composites for Construction, 17, pp.314-323, 2013.
[8] Papakonstantinou, C.G., Balaguru, P.N. and Auyeung, Y., “Influence of FRP confinement on bond behavior of corroded steel reinforcement,” Cement and Concrete Composites, 33(5), pp. 611–621, 2011.
[9] Ding, Y., Ning, X., Zhang, Y., Pacheco-Torgal, F.  and Aguiar, J.B., “Fibres for enhancing of the bond capacity betweenGFRP rebar and concrete,” Construction and Building Materials, 51, pp. 303–312, 2014.
[10]. Minkwan Ju, M. and Oh H., “Experimental assessment on the flexural bonding performance of concrete beam with GFRP reinforcing bar under repeated loading”, International Journal of Polymer Science, 2015.
]11[. رزمی، مهدی و خدایی، نهمت، "بررسی نقش روانکننده بر روی مقاومت پیوستگی بتن-فولاد به وسیله آزمایش Pull out"، فصلنامه علمی-پژوهشی تحقیقات بتن، 14(1)، ص 121-109، 1400.
]12[. حج فروش، محمد، خیرالدین، علی و رضایی فر، امید، "اثر میدان مغناطیسی بر مقاومت پیوستگی میلگرد در بتن حاوی الیاف فولادی با استفاده از آزمون بیرون کشیدن میلگرد"، فصلنامه علمی-پژوهشی تحقیقات بتن، 13(4)، ص 16-5، 1399.
[13]. He, Z. and Tian, G.W., “Reliability-based bond design for GFRP-reinforced concrete”. 44, pp. 1477–1489, 2011.
[14]. Quayyum, S., “Bond Behaviour of Fibre Reinforced Polymer (FRP) Rebars in Concrete” MS thesis, University of British Columbia, 2010.
[15]. American Concrete Institute (ACI) Committee 440, “Guide for the design and construction of structural concrete reinforced with FRP bars”, ACI 440.1R-06, Farmington Hills, MI, 2006.
[16]. Tighiouart, B., Benmokrane, B. and Mukhopadhyaya, P., “Bond strength of glass FRP rebar splices in beams under static loading”, Construction and Building Materials, 13, pp. 383-392, 1999.
[17]. Mosley, C.P., Tureyen, A.K. and Frosch, R.J., “Bond strength of nonmetallic reinforcing bars.” ACI Structural Journal, 105(5), pp. 634-642, 2008.
[18]. Harajli, M., and Abouniaj, M., “Bond Performance of GFRP Bars in Tension: Experimental Evaluation and Assessment of ACI 440 Guidelines”, Journal of Composites for Construction, 14(6). 2010.
[19]. Aly, R.S.M., “Experimental and Analytical Studies on Bond Behaviour of Tensile Lap Spliced FRP Reinforcement Bars in Concrete,” PhD thesis, University of Sherbrooke, Sherbrooke, Quebec, Canada, 2005, 194 pp.
]20[. مقررات ملی ساختمان ایران، مبحث نهم، "طرح و اجرای ساختمان های بتن آرمه"، وزارت راه و شهرسازی، ویرایش پنجم، 1399.
[21]. American Concrete Institute (ACI) Committee 318, “Building Code Requirements
for Structural Concrete.” ACI 318-19, 2019.
[22]. ACI Committee 440, “Guide for the design and construction of structural concrete reinforced with FRP bars (ACI 440.1R-06)”, American Concrete Institute, Farmington Hills, MI, 2015.
[23]. ACI Committee 440, “Guide for the design and construction of concrete reinforced with FRP bars (ACI 440.1R-03)”, American Concrete Institute, Farmington Hills, MI, 2003.
[24]. CAN/CSA S806-02, “Design and construction of building components with fibre reinforced polymers”, Canadian Standards Association, Rexdale, Ontario, Canada, 2012.
[25]. CAN/CSA S6-06, “Canadian highway bridge design code”, Canadian Standards Association, Rexdale, Ontario, Canada, 2006.