Investigating the synergistic effect of using cement, polymer slurry, and recycled tire fibers in improving the mechanical and geotechnical properties of dune sand

Document Type : Research Paper

Authors

1 Civil Engineering Department, Faculty of Engineering, Guilan University, Rasht, Iran, Post Box: 3756.

2 Department of Civil Engineering, Langroud Branch, Islamic Azad University, Langroud, Iran

3 Department of Civil Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

10.22124/jcr.2022.19642.1500

Abstract

Since one of the major problems is these sands, its low resistance to natural moisture and saturation conditions, a laboratory study was conducted to investigate the effect of adding polyvinyl alcohol polymer to improve the mechanical and geotechnical properties of dune sands. The results revealed that the addition of this polymer up to 0.2 weight percent increases the maximum dry weight and does not significantly change optimal moisture. The experiments also showed that by increasing the polymer content, the CBR resistance of the samples increased significantly, so in samples made with 0.5 % of the polymer, the CBR value reached 185; this amount is more than 7.5 times the CBR for neat soil. Experiments showed that by adding 2% cement to the mixture, the resistance of the samples was increased, and their resistance to scouring increased. The direct shear test results indicated that the addition of polymer also significantly increased the shear strength of the samples. Tire fibers were used to prevent this condition and made the samples more ductile. The optimum amount of fiber needed was 0.6% in this case. The results of single-axial tests also showed that adding polyvinyl alcohol increases the soil's compressive strength and shear strength considerably. For example, in a combination of 0.4% polyvinyl alcohol, 1% cement, and 0.6% tire fiber with sand, the compressive strength reached approximately 15 kg/cm2, while the compressive strength for 1% sand cement was about 0.29 kg/cm2.

Keywords


]1[ ملاعباسی، حسین؛ شوش پاشا، عیسی، (1395)، “بررسی اثر زئولیت بر مقاومت خاک ماسه ای بابلسر تثبیت شده با سیمان با استفاده از آزمایش مقاومت فشاری تک محوری“، مهندسی عمران (فنی و مهندسی مدرس)، دوره 16، شماره4
]2[ قهرمان، بیژن، کاهکش، اسماعیل، اسماعیلی، کاظم،(1398)، “تحلیل آزمایشگاهی تأثیر افزودن نانو مواد مونت‌موریلونیت بر افزایش مقاومت سطوح شیروانی سد خاکی و زمان تخریب سازه“، فصلنامه علوم و مهندسی آبیاری، شماره 43
]3[ شوش پاشا، عیسی، روشن، علیرضا، (1397)، “بررسی اثر تثبیت خاک رس با خرده لاستیک بر عملکرد فونداسیون‌های رادیه-شمع“، مهندسی عمران و محیط زیست (دانشکده فنی) دوره 48، شماره4 ، ص 35-41
]4[ شریفی اسدی، داریوش، اردکانی، علیرضا، گروسی، قاسمعلی، (1397)، “بررسی عوامل مؤثر بر عملکرد بهسازی خاک به روش بیولوژیکی در خاک‌های ماسه‌ای با درصد ریزدانه متفاوت“، مهندسی عمران (فنی و مهندسی مدرس)، دوره 18، شماره2، ص 127-137
[5] Baxter C. D. P., King J. W., Silva A. J., Page M., and Calabretta V. V., (2005). “Site characterization of dredged sediments and evaluation of beneficial uses”, Recycled materials in geotechnics, A. H. Aydilek and J. Wartman, eds., ASCE, New York, 150–161.
[6] Gray, D.H and Al-Refeai, T, (1996), “Behavior of fabric versus fiber reinforced sand”, Journal of Geotechnical Engineering, Vol. 112, No. 8, PP. 809-820.
[7] Oldham J.C Eaves R.C, and White D.W. (1997) “Materials Evaluated as Potential Soil Stabilizers”. Miscellaneous Paper S-77-15, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
[8] Dupas J., Pecker, A., (1999), “Static and dynamic properties of sand-cement”, Journal of
Geotechnical Engineering, 105(3), 419-436.
[9] Rourke, T.D, Druschel, S.J and Netravali, A.N, (2000), “Shear strength characteristics of sand-polymer interface”, Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 3, PP. 451-469.
[10] Park, S. S., (2009), “Effect of fiber reinforcement and distribution on unconfined compressive strength of fiber-reinforced cemented sand,” Journal of Geotextiles and Geomembranes, Vol. 27, pp 162–166.
[11] Gopal R, Singh J, and Das G. (2003) “Chemical Stabilisation of Sand Comparative Studies On Urea-Formaldehyde Resins As Dune Sand Stabiliser and Effect Of Compaction OnStrength” (Part IV). In Transactions of Indian Society of Desert Technology and University Centre of Desert Technology, Jodhpur, India, pp.13-19,.
[12] Attom, M. F., (2005), “The Use of Shredded Waste Tires to Improve the Geotechnical Engineering Properties of Sands”, Journal of Environmental Geology, Springer Berlin/Heidelberg, Vol. 49, No. 4, Feburary, pp. 497-503.
[13] Wartman, J., D. G. Grubb, and A. S. M. Nasim. (2004). “Select engineering characteristics of crushed Glass. Journal of Materials in Civil Engineering 16(6), 526 - 539, American Society of Civil Engineers.
[14] Grubb, D. G., Davis, A., Sands, S. C., Carnivale, M., III, Wartman, J.,and Gallagher, P. M. (2006). “Field evaluation of crushed glassd redged material blends.” J. Geotech. Geoenviron. Eng., 132_5_, 577-590.
[15] Grubb, D. G., Davis, A., Sands, S. C., Carnivale, M., III, Wartman, J., and Gallagher, Yigang Liu, P. M. (2006). “Laboratory Evaluation of Crushed Glass–Dredged Material Blends.” J. Geotech. Geoenviron.Eng., 132:5_562_576.
[16] Foose, G. J., Benson, C. H. and Bosscher P. J., (2006), “Sand Reinforced with Shredded Waste Tires”, Journal of Geotechnical Engineering (ASCE), Vol. 122, No. 9, September, pp. 760-767.
[17] Wang, Y., Frost, J.D. and Murray, J., (2010), Utilization of recycled fiber for soil stabilization., Proceedings of the Fiber Society Meeting., May 17-19. Guimaraes. Portugal, 59-62.
[18] مهران نیا، نیما؛ وفاییان، محمود؛ (2010)، “ارزیابی نقش الیاف کارخانه لاستیک سازی در تسلیح خاک ماسه ای“، اصفهان، ایران.
[19] Hataf, N. and Rahimi, M. M., (2014), “Experimental Investigation of Bearing Capacity of Sand Reinforced with Randomly Distributed Tire Shreds”, Construction and Building Materials, (Elsevier, Ltd.), 20, 910-916.
[20] Pamukcu S. and Akbullut S., (2013), “Thermoelastic Enhancement of Damping of Sand using Synthetic Ground Rubber”, J. Geotech. and Geoenvir. Engrg., Vol. 132, Issue 4, pp. 501-510.
[21] Michalowski, L. and Germak, J, (2014), Triaxial compression of sand reinforced with fibers, Jour.Geotechnical and Geoenviromental Engineering, Vol. 129, No. 2, PP. 125-136.
[22] Ochi, T., Okubo, S., and Fukui, K., (2015). “Development of recycled pet fiber and its application as concrete reinforcing fiber.” Journal of Cement and Concrete Composites, 29, 448-455.
[23] Costas A. Anagnostopoulos. (2014) “Laboratory study of an injected granular soil with polymer grouts”, Tunnelling and Underground Space Technology 20, pp 525–533.
[24] Costas A. Anagnostopoulos, (2015) “Cement–clay grouts modified with acrylic resin or methyl methacrylate ester: Physical and mechanical properties” Construction and Building Materials 21 (2007) 252–257.
[25] C.A. Anagnostopoulos, T. Papaliangas, S. Manolopoulou, T. Dimopoulos. (2016) “Physical and mechanical properties of chemically grouted sand”, Tunnelling and Underground Space Technology 26, pp 718–724.
]26[ ملاعباسی، حسین؛ شوش پاشا، عیسی، (1395)، “بررسی اثر زئولیت بر مقاومت خاک ماسه ای بابلسرتثبیت شده با سیمان با استفاده از آزمایش مقاومت فشاری تک محوری”، مجله علمی- پژوهشی مهندسی عمران مدرس، دوره شانزدهم، شماره 4.
]27[-عابدی کوپایی، جهانگیر؛ سلطانیان، سمانه؛ قیصری، مهدی، (1394)، “تأثیر الیاف پلی‌پروپیلن بر ویژگی‌های مکانیکی ماسه بادی”، نشریه آبیاری و زهکشی ایران، شماره 1، جلد 9، صص 22-31.
[28] Yong, R.N., Mohammed, L.F., Mohamed, A.M.O., O’Shay, T.A., Hoddinott, K.B., (2004), “Retention and transport of oil residue in a loamy soil. ın: Analysis of Soils Contamined with Petroleum Constituent”, pp 89-101, Philadelphia.
[29]یازی، یونس؛ (2001)، “تثبیت خاک‌های منتخب از حاشیه کویر با آهک و سیمان“، دانشگاه فردوسی مشهد.
[30] Reed Jr, R., Moore, K. L., & Meyers, G. W. (1981). “Soil stabilization materials and methods” (No. US 4277203).