بررسی واکنش قلیایی ماسه لایروبی شده ساحل جهت ساخت بتن در محیط دریایی و محوطه بنادر : مطالعه موردی ماسه ساحل دریای خزر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی عمران – مهندسی سواحل، بنادر و سازه های دریایی، دانشکده فنی، دانشگاه گیلان، رشت، ایران.

2 استادیار، گروه عمران، دانشکده فنی، دانشگاه گیلان، رشت، ایران.

3 دانشیار، گروه عمران، دانشکده فنی، دانشگاه گیلان، رشت، ایران.

10.22124/jcr.2021.20990.1530

چکیده

انبساط و آسیب ناشی از واکنش قلیایی سنگدانه ها در سازه های مختلف بتنی بعنوان یکی از دغدغه های مهم در دوام سازه های بتنی توجه بسیاری از محققین را به شناسایی و مطالعه این مهم معطوف نموده است. سنگدانه های حاوی مواد فعال حتی به مقدار اندک وزنی در بتن، ممکن است باعث انبساط های مخرب گردند. این واکنش بین برخی از مواد سنگدانه با هیدروکسید قلیایی موجود در منافذ بتن یک ژل را تشکیل می دهند. این ژل بدلیل جذب آب و تورم با ایجاد تغییراتی در مرز های بین سنگدانه و خمیر سیمان، از طریق ایجاد فشارهای داخلی باعث انبساط و ترک خوردن بتن می گردد.از سوی دیگر امروزه به دلیل محدودیت منابع قرضه و اهمیت مسایل زیست محیطی در اکثر کشورها، استفاده از مصالح بازیافتی و بلااستفاده در صنعت بتن رونق فراوانی یافته است. از این رو در پژوهش حاضر با رویکرد استفاده از مصالح لایروبی و پتانسیل های موجود در ساحل دریای خزر، در گام نخست با انجام آزمایش سنگ نگاری ( مشاهدات میکروسکوپی) مطابق استاندارد ASTM C295 به شناسایی کانی های با پتانسیل واکنش قلیایی – سیلیسی وکربناتی پرداخته شد. سپس بررسی واکنش زایی مصالح از طریق ساخت منشورهای بتن و ملات حاوی این سنگدانه ها در دوحالت کوتاه مدت و بلند مدت مورد مطالعه قرار گرفت. در نهایت با انجام آزمایش شیمیایی تعیین پتانسیل فعالیت قلیایی- کربناتی سنگدانه های کربناتی مورد ارزیابی قرار گرفت. براساس نتایج کسب شده از آزمایش‌های مزبور کیفیت مصالح لایروبی شده از دریا جهت ساخت بتن مناسب می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Alkaline Reaction of Dredged Caspian Sea Marine Sand to Make Concrete in Marine Environment and Ports

نویسندگان [English]

  • mohammad hossein hosseinjani miyandehi 1
  • Payam Zanganeh Ranjbar 2
  • M. Ahmad Lashteh Neshaei 3
  • Malek Mohammad Ranjbar Taklymie 3
  • Hossein Nassiraei 2
1 Civil Engineering Department Faculty of Engineering Guilan University Rasht Iran
2 Civil Engineering Department, Faculty of Engineering, Guilan University, Rasht, Iran
3 Civil Engineering Department Faculty of Engineering Guilan University Rasht Iran
چکیده [English]

Expansion and damage due to the alkaline reaction of aggregates in various concrete structures as one of the major concerns in the durability of concrete structures have attracted the attention of many researchers to identify and study this importance. Aggregates containing active ingredients can cause destructive expansions even when they are small in weight. This reaction occurs between some materials in aggregates with alkaline hydroxide in the concrete pores resulting in a water-absorbing gel. This phenomenon usually causes the concrete to expand and crack through internal changes by creating changes in the boundaries between the aggregate and the cement paste. On the other hand, due to limited credit resources and the importance of environmental issues in most countries, using recycled and unused materials in the concrete industry has flourished. Therefore, in the present study, with the approach of using dredging materials and potentials in the Caspian Sea coast, in the first step, by performing lithographic experiments (microscopic observations) according to ASTM C295 standard, minerals with alkali-siliceous and carbonate reaction potentials have been identified. Then, the reactivity of the materials was studied by making concrete and mortar prisms containing these aggregates in both short-term and long-term states, and finally, by performing chemical experiments, the potential of alkaline-carbonate activity of carbonate aggregates was evaluated. Based on the results obtained from these experiments, the quality of dredged materials from the sea was suitable for making concrete.

کلیدواژه‌ها [English]

  • Caspian Sea dredged sand"
  • petrography of materials"
  • alkaline-siliceous reaction"
  • "
  • alkaline-carbonate reaction
[[1]] Chu, S.H. Yao, J.J.strength model for concrete made with marine dredged sediment. Journal of Cleaner ProductionVolume 274, 20 November 2020, Article number 122673
[[1]] Achour, R., Zentar, R., Abriak, N.-E., Rivard, P., Gregoire, P., 2019. Durability study of concrete incorporating dredged sediments. Case Stud. Constr. Mater. 11, e00244.
[[1]] Jorge de Brito and Francisco Agrela. “ New Trends in Eco-efficient and Recycled Concrete “ Philadelphia : Elsevier (2019)  
[[1]]Y. Zhao, X. Hu, C. Shi, Z. Zhang and D. Zhu”A review on seawater sea-sand concrete: Mixture proportion, hydration, microstructure and properties”Construction and Building Materials 2021 Vol. 295 Pages 123602DOI: https://doi.org/10.1016/j.conbuildmat.2021.123602
[[1]]B. Fournier, M.A. Bérubé, M.D.A. Thomas, N. Smaoui, K.J. Folliard, Evaluation and Management of Concrete Structures Affected by Alkali–Silica Reaction—A Review. MTL 2004-11 (OP), Nat. Resour. Canada, Ottawa. (2004).
[[1]]N.W. Hayes, Q. Gui, A. Abd-Elssamd, Y. Le Pape, A.B. Giorla, S. Le Pape, E.R. Giannini, Z.J. Ma, Monitoring alkali-silica reaction significance in nuclear concrete structural members, J. Adv. Concr. Technol. 16 (2018) 179–190, https://doi.org/10.3151/jact.16.179.
[[1]] Kim Hung Mo,Tung-Chai Ling,Tee How Tan,Geok Wen Leong,Choon Wah Yuen,Syed Nasir ShahAlkali-silica reactivity of lightweight aggregate: A brief overview. Construction and Building Materials. Elsevier. 8 February 2021 https://doi.org/10.1016/J.CONBUILDMAT.2020.121444
[[1]] Mark G Alexander,4 - Alkali–aggregate reaction,Editor(s): Sidney Mindess,In Woodhead Publishing Series in Civil and Structural Engineering,Developments in the Formulation and Reinforcement of Concrete (Second Edition), Woodhead Publishing,2019,Pages 87-113,ISBN 9780081026168, https://doi.org/10.1016/B978-0-08-102616-8.00004-6.
[[1]]L.F.M. Sanchez, B. Fournier, M. Jolin, D. Mitchell, J. Bastien, Overall assessment of Alkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures, Cement and Concrete Research, Volume 93,2017,Pages 17-31,ISSN 0008-8846, https://doi.org/10.1016/j.cemconres.2016.12.001. (https://www.sciencedirect.com/science/article/pii/S0008884616306949)
[[1]]Yifan Zhao, Xiang Hu, Caijun Shi, Zuhua Zhang, Deju Zhu, A review on seawater sea-sand concrete: Mixture proportion, hydration, microstructure and properties, Construction and Building Materials, Volume 295, 2021,
123602,ISSN0950-0618, https://doi.org/10.1016/j.conbuildmat.2021.123602.
[[1]]Sidney Mindess,6 - Resistance of Concrete to Destructive Agencies,Editor(s): Peter C. Hewlett, Martin Liska, Lea's Chemistry of Cement and Concrete (Fifth Edition), Butterworth-Heinemann, 2019, Pages 251-283, ISBN 9780081007730, https://doi.org/10.1016/B978-0-08-100773-0.00006-X.
[[1]] لیثی حامد، شکرچی زاده محمد، بررسی اثر واکنش قلیایی –سیلیسی بر مشخصه های مکانیکی المان های بتنی به کمک آزمایش های متدواول و آزمایش های غیر مخرب، پایان نامه دانشگاه تهران ، اسفند ماه 1386
[[1]]M. Alnaggar, G. Cusatis, G. Di Luzio, Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) deterioration of concrete structures, Cem. Concr. Compos. 41 (2013) 45–59, https://doi.org/10.1016/j.cemconcomp.2013. 04.015.
[[1]] Afshin Mohammadi, Ebrahim Ghiasvand, Mahmoud Nili, Relation between mechanical properties of concrete and alkali-silica reaction (ASR); a review, Construction and Building Materials, Volume 258, 2020, 119567, ISSN 0950 0618, https://doi.org/10.1016/j.conbuildmat.2020.119567.
[[1]]Asghar Gholizadeh Vayghan, Farshad Rajabipour, James L. Rosenberger, Composition–rheology relationships in alkali–silica reaction gels and the impact on the gel's deleterious behavior, Cement and Concrete Research, Volume 83, 2016, Pages 45-56, ISSN 0008-8846, https://doi.org/10.1016/j.cemconres.2016.01.011.
[[1]]F. Rajabipour, H. Maraghechi, G. Fischer, Investigating the alkali-silica reaction of recycled glass aggregates in concrete materials, J. Mater. Civ. Eng. 22 (2010) 1201–1208, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000126.
[[1]]C.A. Milanesi, S.A. Marfil, F. Locati, D. Benito, Effects of different alkaline solutions on the expansivity of rock prisms of an alkali-reactive dolostone from Valcheta (Rio Negro, Argentina), Cem. Concr. Res. 134 (2020) 106092, , https://doi.org/10. 1016/j.cemconres.2020.106092.
[[1]]Carlos A. Milanesi, Silvina A. Marfil, Francisco Locati, Expansive behavior of an alkali-carbonate reactive dolostone from Argentina: Proposal of an osmotic theory-based model to explain the expansion caused by the alkali attack, Cement and Concrete Research, Volume 138, 2020, 106239, ISSN 0008-8846, https://doi.org/10.1016/j.cemconres.2020.106239. (https://www.sciencedirect.com/science/article/pii/S0008884620303471)
[[1]]G.V. Verbeck, C. Gramlich, Osmotic studies and hypothesis concerning alkali aggregate reaction, ASTM Proc. 55 (1955) 1110–1113.
[[1]]C.A. Milanesi, Evaluacion del mecanismo de expansion de rocas dolomiticas de la zona de Valcheta (provincia de Rio Negro, Argentina) empleadas como agregado en morteros y hormigones de cemento portland, Doctoral Thesis Universidad Nacional del Sur, Argentina, 2018 (294 p. (in Spanish)).
[[1]] R.S. Crouch, J.G.M. Wood, Damage evolution in ASR affected concretes, Eng. Fract. Mech. 35 (1990) 211–218
[[1]] Y. Kubo,M. Nakata, Effect of reactive aggregate on mechanical properties of concrete affected by alkali-silica reaction, Proceedings of the 14th International Conference on Alkali–Aggregate Reaction in Concrete, May 20–25th 2012, Austin (Texas), 2012 (electronic).
[[1]] Z.H. Zhang, Z.Q. Sang, L.Y. Zhang, Z.X. Ma, Y. Zhang, Experimental research on durability of concrete made by seawater and sea-sand, Adv. Mater. Res. 641– 642 (2013) 385–388.
[[1]]L.F.M. Sanchez, Contribution to the Assessment of Damage in Aging Concrete Infrastructures Affected by Alkali-Aggregate Reaction(PhD thesis) Department of Geology and Geological Engineering, Université Laval, Québec, 2014
[[1]]N. Smaoui, M.A. Bérubé, B. Fournier, B. Bissonnette, Influence of specimen geometry, orientation of casting plane, and mode of concrete consolidation on expansion due to ASR, Cem. Concr. Aggreg. 26 (2) (2004) 58–70.
[[1]]Portland Cement Association (PCA) 2010 GUIDE FOR ROLLER-COMPACTED CONCRETE PAVEMENTS
[[1]] رمضانیان پور، علی اکبر؛ پیدایش، منصور. شناخت بتن، انتشارات جهاد دانشگاهی واحد صنعتی امیرکبیر، چاپ اول، 1389.
[[1]]ASTM C150 / C150M-21, Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, 2021, www.astm.org
[[1]]ASTM C114-18, Standard Test Methods for Chemical Analysis of Hydraulic Cement, ASTM International, West Conshohocken, PA, 2018, www.astm.org
[[1]] استاندارد ملی ایران شماره 1-19038، سنگدانه – آزمون های خواص شیمیایی- قسمت 1: تجزیه شیمیایی – روش آزمون
[[1]] استاندارد ملی ایران شماره 320، سنگدانه مصرفی بتن – ویژگی ها
[[1]]ASTM C 1260 “ Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)”2014
[[1]] ASTM C 1293 “Standard Test Method for Determination of Length Change of Concrete Due to Alkali- Silica Reaction”2018
[[1]]Michael Thomas, Benoit Fournier, Kevin Folliard, Jason Ideker, Medhat Shehata, Test methods for evaluating preventive measures for controlling expansion due to alkali–silica reaction in concrete, Cement and Concrete Research, Volume 36, Issue 10, 2006, Pages 1842-1856, ISSN 0008-8846, https://doi.org/10.1016/j.cemconres.2006.01.014.
[[1]]an Lindgård, Michael D.A. Thomas, Erik J. Sellevold, Bård Pedersen, Özge Andiç-Çakır, Harald Justnes, Terje F. Rønning, Alkali–silica reaction (ASR)—performance testing: Influence of specimen pre-treatment, exposure conditions and prism size on alkali leaching and prism expansion, Cement and Concrete Research, Volume 53, 2013, Pages 68-90, ISSN 0008-8846, https://doi.org/10.1016/j.cemconres.2013.05.017.
[[1]] ASTM C 295 “ Standard Guide for Petrographic Examination of Aggregates for Concrete”2019
[[1]] ASTM C117-17, Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing, ASTM International, West Conshohocken, PA, 2017, www.astm.org
[[1]] ASTM C136 / C136M-19, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2019, www.astm.org
[[1]]CAN/CSA A23.2-26A. Determination of potential alkali-carbonate reactivity of quarried carbonate rocks by chemical composition . March 2011
[[1]] Geoff Blight, Mark Alexander “ Alkali-Aggregate Reaction and Structural Damage to Concrete” ISBN 9781138073036 -Published August 14, 2018 by CRC Press 250 Pages
[[1]] ASTM C586-19, Standard Test Method for Potential Alkali Reactivity of Carbonate Rocks as Concrete Aggregates (Rock-Cylinder Method), ASTM International, West Conshohocken, PA, 2019, www.astm.org
[[1]] پرفسور مهتا و مونته ئیرو ترجمه: رمضانیانپور، علی اکبر، قدسی، پرویز و گنجیان، اسماعیل " ریزساختار، خواص و اجزای بتن" انتشارات دانشگاه صنعتی امیرکبیر چاپ اول 1383