Laboratory study of mechanical properties and microstructure of cement mortar containing Silicafume and Granulated Blast- Furnace Slag in post-high temperature conditions

Document Type : Research Paper

Authors

1 Semnan university

2 semnan university

3 garmsar university

Abstract

Sandstone shrinks on heating, and therefore, it counteracts to some extent the expansion of the quartz grains. The loss in strength of sandstone mortars on exposure to fire is, however, often high, and therefore sandstone does not form a good fire-resistant aggregate. This paper deals with an experimental study on the post-heat performance of cement mortars containing silica fume and granulated blast-furnace slag (GBFS). In doing so, the mortar specimens were provided in standard formworks to perform compressive, tensile and flexural tests containing 7, 14 and 21% of pozzolanic materials as a replacement for cement. Moreover, for the sake of heating process, the specimens were placed in an electric furnace exposed to temperatures of 25, 100, 250, 500, 700 and 9000c with standard temperature increment and once the heating process ended and the specimens were cooled, the tests were carried out on them. Based on the results obtained, the maximum effect of utilizing granulated blast-furnace slag (GBFS) and silica fume respectively takes place in low (up to 2500c) and high (5000c and greater degrees) temperatures. Quantitatively, the compressive, tensile and flexural strengths were raised by 73 and 180%, 45 and 100%, 106 and 112%, respectively in low and high temperatures. In addition, as the temperature rises, the particles of specimens containing silica fume and granulated blast-furnace slag (GBFS) shrinks less in size compared to the reference specimen.

Keywords